A New Saponin Transformed from Ginsenoside Rh₁ by *Bacillus subtilis*

Guo Hong LI¹, Yue Mao SHEN², Ke Qin ZHANG¹*

¹ Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091

Abstract: A novel saponin was isolated from the transformed products of ginsenoside Rh₁ by *Bacillus subtilis*. It's structure was determined to be 3-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-20 (S)-protopanaxatriol on the basis of the spectral data.

Keywords: Ginsenoside Rh₁, novel saponin, biotransformation.

Biotransformation is an efficient way to produce new structural products. In our experiments, ginsenoside Rh_1 was biotransformed by *Bacillus subtilis* and a new triterpene saponin, 3-O- β -D-glucopyranosyl-6-O- β -D-glucopyranosyl-20(S)-protopanaxatriol (1) was isolated from the transformed products. The saponin was linked with two β -D-glucopyranosyls at C-3 and C-6.

Experimental

Bacillus subtilis was inoculated in 250 mL flask contained 100 mL wort medium. 120 mg ginsenoside Rh_1 was dissolved in ethanol and equally accede to three flasks when the strain was inoculated in, then the disposal was cultured at 30 °C for 96 hours. The

_

²The State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

^{*} E-mail: Kqzhang1@yahoo.com.cn

Table 1 The NMR data of compound 1 in C_5D_5N (δ ppm)

Position	δ_{C}	δ_{H}	HMBC	¹ H- ¹ H COSY
1	39.4	0.99, s	C-9, C-5, C-4	H-1, H-2
		1.65, s	C-19, C-2	H-1, H-2
2	27.9	1.90, d, 10.8	C-4	H-1, H-2
		1.85, d, 9.4		H-1, H-2
3	89.2	4.23, dd, 9.0, 15.2	C-5, C-1' (w)	, ,
4	40.3	/	2 2, 2 2 ()	,
5	61.5	1.40, m	C-19, C-3	H-6
6	80.3	4.36, m	C-1"	H-5, H-7
7	45.3	2.46, d, 12.4	C-18, C-9, C-8, C-5	H-7,
,	45.5	1.90, s	C-18, C-9(w), C-8, C-5	H-5, H-7
0	41.2		C-16, C-3(w), C-6, C-3	11-5, 11-7
8	41.2	/	C 11 C 9	/ TT 11
9	50.2	1.59, s	C-11, C-8	H-11
10	39.7	/	/	/
11	32.1	2.29, m	C-13(w), C-12	H-9, H-12
12	71.1	3.91, m		H-13
13	48.3	2.02, s	C-30,	H-12
			C-16(w),C-14,C-12	
14	51.7	/	/	/
15	31.3	1.63, s	C-30, C-16	H-16
		1.02, s	C-30, C-14	
16	26.9	1.35, s	C-20, C-17, C-14	H-17, H-15
		1.77, s	2 -2, 2 -1, 2 -1	H-15, H-17
17	54.8	2.28, m	C-15, C-13	H-16, H-15
18	17.4	1.16, s	C-30, C-9, C-8, C-5(w)	11 10, 11 19
19	17.7	1.05, s	C-9, C-5, C-1	,
			, ,	
20	73.0	/	/	/
21	27.1	1.39, s	C-22, C-20, C-17	/
22	35.9	2.02, m	C-21, C-20, C-17	/
		1.68, m	C-21	
23	23.0	/	/	
24	126.4	5.32, m	C-27, C-26, C-23	/
25	130.8	/	27, 6 26, 6 25	,
26	25.8	1.56, s	C-27, C-25, C-24	,
				//
27	17.6	1.50, s	C-26 (w)	
28	31.7	2.02, s	C-19, C-5, C-4	/
29	16.3	1.52, s	C-28, C-5, C-4, C-2	/
30	16.8	0.78, s	C-15, C-14, C-13, C-8	
	3-glc			
1'	105.8	4.94, d, 7.7	C-3, C-3', C-4', C-5'	H-2'
2'	75.6	4.13, m	C-1', C-3	H-3', H-1'
3'	80.3	4.36, m	C-1', C-6'	H-2', H-4'
4'	72.0	3.91, m	C-1'	H-3'
5′	78.6	3.49	C-3'	
6′	62.5	4.47, m	/	H-6'
		4.32, m		H-6'
	6-glc			11 0
1"	103.1	5.91, d, 8.0	C-3"	H-2"
2"			C-3" C-1", C-3"	
	74.8	4.18, m	C-1 , C-3	H-1"
3"	77.6	3.87, m	/ 	/
4''	71.0	4.21	C-1", C-2", C-6"	/
5''	77.6	3.87 m	/	
6''	62.6	4.47, m	/	H-6''
		4.32, m		H-6''

Note: The 1D-NMR data for compound 1 was recorded on Bruker AM-400(400 MHz), and 2D-NMR data for compound 1 was recorded on Bruker DRX-500(500 MHz), respectively.

cultures of *Bacillus subtilis* containing saponin were combined (300 mL) and filtered. The filtrate was exhaustively extracted four times with n-butanol and 4.5 g transformational residue of ginsenoside Rh₁ (TRh) was obtained from the filtrate. Fraction TRh was chromatographied on a silica gel (12 g) column and eluted with chloroform and methanol (6:1, v/v) and further subjected on Sephadex LH-20 eluting with methanol to obtain compound 1 (5 mg).

Compound 1, the negative HRFABMS determined the molecular formula to be $C_{42}H_{72}O_{14}$ (m/z 799.4846 [M - H], calcd. 799.4844), which was 162 amu greater than its substrate ginsenoside Rh₁. The data of ¹H- and ¹³C-NMR showed compound **1** had two proton signals at δ 4.94 (d, J = 7.7 Hz), δ 5.91 (d, J = 8.0 Hz) and two methine carbon signals at δ 105.8, δ 103.1, and two terminal carbons at δ 62.5 and 62.6, hence one could speculate that compound 1 contained two β-glucopyranosyls. Compared with the spectral data of the ginsenoside Rh₁, the C-3 chemical shift of compound 1 was obviously shifted to low field. Therefore the additional β-glucopyranosyl might be linked at C-3. The HMBC experiments showed the ¹H-¹³C long-range correlations between the methine protons at δ 4.23 (H-3) and δ 105.8 (C-3-glc-1"), δ 4.63 (H-6) and δ 103.1 (C-6-glc-1'), δ 5.91 (H-6-glc-1') and δ 80.3 (C-6), and between the methine protons at δ 4.94 (H-3-glc-1") and δ 89.2 (C-3). The ROESY experiments showed ^{1}H - ^{1}H correlation between the protons at δ 4.23 (H-3) and δ 4.94 (H-3-glc-1"). In comparison with the substrate ginsenoside Rh₁, compound 1 had additional β-glucopyranosyl linked with C-3, so its structure was determined to be 3-O-β-D-glucopyranosyl-6-*O*-β-D-glucopyranosyl-20 (*S*)-protopanaxatriol.

Compound **1**: white power, $[\alpha]_D^{22} + 180$ (c 0.1, CH₃OH), FAB-MS⁻ m/z: 799 ([M-H]⁻, 100), 637 ([M – H - 162]⁻, 6), 475([M – H - 2×162]⁻, 14); IR (KBr) v 3414, 2958, 1633, 1455, 1146, 1077, 1031 cm⁻¹. The ¹H- and ¹³C-NMR spectral data see **Table 1**.

Acknowledgments

The authors gratefully acknowledge support for this work of the National Natural Science Foundation (No. 20362010) and are grateful to Mr. Y. N. He and Ms. H. L. Liang in the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, for measuring NMR and MS data, respectively.

Reference

1. J. Zhou, M. Z. WU, S. Taniyasu, H. Besso et al., Chem. Pharm. Bull., 1981, 29 (10), 2844.

Received 18 February, 2004