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Abstract

Microarray technology provides a powerful tool for the expression profile of thousands of genes simultaneously, which makes it possible to
explore the molecular and metabolic etiology of the development of a complex disease under study. However, classical statistical methods and
technologies fail to be applicable to microarray data. Therefore, it is necessary and motivating to develop powerful methods for large-scale
statistical analyses. In this paper, we described a novel method, called Ranking Analysis of Microarray Data (RAM). RAM, which is a large-scale
two-sample t-test method, is based on comparisons between a set of ranked T statistics and a set of ranked Z values (a set of ranked estimated null
scores) yielded by a “randomly splitting” approach instead of a “permutation” approach and a two-simulation strategy for estimating the
proportion of genes identified by chance, i.e., the false discovery rate (FDR). The results obtained from the simulated and observed microarray
data show that RAM is more efficient in identification of genes differentially expressed and estimation of FDR under undesirable conditions such
as a large fudge factor, small sample size, or mixture distribution of noises than Significance Analysis of Microarrays.
© 2006 Elsevier Inc. All rights reserved.
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Microarray technology provides a powerful tool for
measuring the expression levels of large numbers of genes
simultaneously and creates unparalleled opportunities to study
complex physiological or pathological processes, including
the development of disease, that are mediated by the
coordinated action of multiple genes [1]. Detection of genes
differentially expressed across experimental, biological, and/or
clinical conditions is a major objective of microarray
experiments. Methods for finding genes significantly differ-
entially expressed in the context of microarray data analysis
can be classified into three major groups [2,3]: marginal
filters, wrappers [4], and embedded approaches [5,6]. The
wrapper and embedded methods are a type of search
algorithm by which candidate gene subsets that are useful
to build a good predictor are constructed and selected and
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then evaluated by using a classification algorithm [3,7]. The
filter approaches are a type of simple and fast method
including t tests and nonparametric scoring [8,9] and analysis
of variance [1,10] for searching for the features (genes) or
feature (gene) subsets that are irrelevant and independent of
each other [3,7]. For the microarray data, the filter approaches
encounter a challenging simultaneous inference problem, as
the probability of committing a type I error increases with the
number of tests performed [11]. To resolve the statistical
problem in testing a large family of null hypotheses, several
multiple procedures have been developed. The Bonferroni
procedure, the Holm procedure [12], the Hochberg procedure
[13], and the Westfall and Young procedure [14] address the
multiple test problem by controlling the family-wise error
rate, which is the probability that at least one false positive
occurs over the collective tests [15]. However, these methods
are based on the assumption that different tests are
independent of each other; they are, thus, not well suited to
microarray data, often being too stringent, and may yield no
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or few positive genes [16] and may result in unnecessary loss of
power. Benjamini and Hochberg [17] have proposed an
alternative measure, the false discovery rate (FDR), to control
erroneous rejection of a number of true null hypotheses. FDR is
an expected proportion of the false positives among all the
positives detected. The FDR-based multiple testing approaches,
such as the Benjamini and Hochberg (BH) procedure [17,18]
and the Benjamini and Liu procedure [19], have been developed
for testing for a large family of hypotheses. These procedures are
generally suited to larger sample sizes because small sample
sizes lead FDR to be too “granular” [16]. Most recently, Storey
[20] and Storey and Tibshirani [21] developed a new measure,
i.e., positive FDR (pFDR), that is an arguably more appropriate
variation. It multiplies the FDR by a factor of π0, which is the
estimated proportion of non-differentially expressed genes to all
genes on the arrays [22]. The estimate of pFDR is smaller than
the estimate of FDR [22]. Tsai et al. [23] suggested the use of the
conditional FDR (cFDR) on the most significant findings.
Pounds and Cheng [15,24] proposed the spacing LOESS
histogram approach to estimate of cFDR. Tusher et al. [16]
developed a new FDR-based method, called Significance
Analysis of Microarrays (SAM). SAM is very popular because
it can identify genes with significant change of the level of
expression and can estimate FDR based on permutations.
However, the conventional permutation approach is not the most
appropriate method for estimating the null distribution for most
microarray data because sample sizes in such experiments are
commonly small and yield a relatively small number of
permutations leading to inaccurate ranking of scores. Although
SAM has the advantage of being distribution-free, its use of a
fudge factor (S0) makes it mostly applicable to normal
distributions because S0 is in general smaller than or equal to 1
in normal distributions. Nonnormal distributions or small
sample sizes can produce a larger S0, which often makes SAM
lose its power or become not applicable.

These problems in SAM led us to develop a new statistical
method called Ranking Analysis of Microarray (RAM) Data.
The overall approach of RAM is somewhat similar to that of
SAM, which is to identify genes with significant changes in
expression through the use of gene-specific t tests, but RAM
evaluates its significance based on an improved empirical
distribution generated by a “randomly splitting” approach
instead of the “permutation” approach and implementation of a
simulation-based interval method for estimation of FDR. As a
result, RAM has all the major advantages of SAM, plus it
performs very well for small sample sizes, which are typical in
microarray experiments.

Methods

T statistic

For simplicity, we will focus our discussion on the analysis of expression
data from experiments of two different classes (designated as 1 and 2), which is
very common in practice. The two classes may correspond to two different
genotypes of individuals, treatments, cell types, tissues, etc. Let N be the number
of genes examined and mik be the number of replicate observations for the
expression of gene k (k=1, …, N) in class g (g=1, 2). We will refer to the
collection of all the observations for a given gene in class g as sample g.
Therefore, mgk is the size of sample g for gene k. Typically m11=m12=…=
m1N=m1 and m21=m22=…=m2N=m2, otherwise the experiment is said to have
some missing observations.

Let x̄gk and σgk
2 represent the mean and variance, respectively, of the

expression of gene k in sample g. Define for gene k

tdk ¼ x̄1k � x̄2k :

The traditional t-test statistic for testing if there is a significant difference
between two sample means is equal to

tk ¼ dk=rk ,

where in the current context

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21k=m1k þ r22k=m2k

q
,

for unequal variances for the two class experiments, or

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½ðm1k � 1Þr21k þ ðm2k � 1Þr22k �=ðm1k þ m2k � 2Þgð1=m1k þ 1=m2kÞ

q
,

for equal variances. Although the traditional t statistic is a reasonable choice for
some expression data sets, its applicability is often questionable because a small
sampling variance (<<1), which can often arise due to randomness from a large
number of genes and small sample size, and relatively large value of dkmay lead
to an erroneous conclusion. Such an effect is generally known as the fudging
effect. To reduce the fudging effect, Tusher et al. [16] proposed a modified t
statistic defined as

Tk ¼ dk=ðS0 þ rkÞ;
where S0 is a constant representing the minimal coefficient of variation of tk
computed as a function of σk in the moving windows across the data. However,
in our own studies, we noted that the fudging effect using the modified t statistic
is still quite strong when the sample size is small. In particular, small sample size
often leads to an unreasonably large value of S0 that dominates the test statistic
and consequently reduces the power of the analysis. To circumvent the problem,
we propose a simple alternative correction δk for the variance of expression for
gene k as

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak þ r21k=m1k þ r22k=m2k

q
ð1aÞ

for the case of unequal variances, and

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Akþf½ðm1k�1Þr21kþðm2k�1Þr22k �=ðm1kþm2k�2Þgð1=m1kþ1=m2kÞ;

q
ð1bÞ

for the case of equal variances, where

Ak ¼ 1 if dk >rk < 1
0 otherwise

:

�
ð2Þ

Thus, the t statistic for the difference in expression levels of gene k is redefined
as

Tk ¼ dk=dk : ð3Þ
Since Tk= tk unless dk>σk<1, the new test statistic is a simpler extension of

the traditional t statistic than that proposed by Tusher et al. [16].

Ranking analysis

To identify genes whose expression levels are significantly different under
two experimental conditions, a common practice is to rank the genes according
to their values of the chosen statistics, which in our situation is T. Suppose Tk* is
the k*-th largest T value, then its corresponding gene k is said to have
significantly different expression between the two experimental conditions for a
given threshold value Δ if

jTk* � Zk*j > D; ð4Þ



Fig. 1. Identification of the genes significantly differentially expressed. (A) A
plot of T values vs Z values based on the observed data of 3000 genes in two
samples, each consisting of 12 rats in response to stroke, where estimates of Z
values were obtained by use of the RS approach. (B) A plot of observed T vs
expected T (Z) in SAM. The simulated data set comprised 30% expression
noises following gamma distribution and 70% following normal distribution
where expression levels of 3000 genes in two samples, each consisting of 12
replicates, were simulated using one set of the observed sample means and two
sets of the observed sample variances and treatment effect values of G=10R (for
30% of the genes), where R is a random uniform variable over (0, 1].
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where Zk*=E(Tk*) is the expectation of Tk* under the null hypothesis that there
is no gene having a significant difference in expression. This type of test is
known as the ranking test.

To enable the ranking test, it is critical to obtain a good estimate of Zk*.
Tusher et al. [16] proposed a permutation approach for this purpose, which uses
a standard permutation procedure for each gene. This process works well if the
sample size is large. When the sample size is small, however, the number of
permutated samples for each gene is rather small, which leads to a biased
ranking test and even renders the test not applicable. This appears to be caused
by the randomness introduced by permutations that lead to biased tail
distributions for ranked values. The observations from analyzing both real and
simulated data led us to develop a randomly splitting (RS) approach to estimate
Z as follows.

First each sample is randomly split into two subsamples with size
difference not larger than a given value C. We found that it is best to set C=4.
For the J-th split, let x̄ hgk

J be the mean of subsample h of sample g for gene k.
Define ē 1k

J = x̄ 11k
J − x̄ 12k

J and ē 2k
J = x̄ 21k

J − x̄ 22k
J , and hence,

ē J
k ¼ 1

2
ēJ1k þ ēJ2k
� �

: ð5Þ

The splitting process is carried out for every gene. Define Zk
J=ek

J /δk. The set
of Zk

J values is then ranked. Let Zk*
J be the k*-th largest value for the J-th split.

Then we estimate Zk* by the mean of Zk*
J over all the splits, i.e.,

Z̄ k* ¼ 1
M

XM
J¼1

ZJ
k*: ð6Þ

Fig. 1A shows the use of Zk* in the identification of the genes that are
differentially expressed in a set of 3000 genes in a stroke-response experiment.
In this figure the solid line represents T=Z and the two dashed lines represent
the lower and upper boundaries corresponding to a thresholdΔ. The dots below
the lower boundary and over the upper boundary represent genes that are
significantly expressed at the given threshold Δ.

Estimate of FDR

Consider a series of threshold valuesΔi(i=1,…,L). Let N(i) be the number of
genes that are significant at the threshold Δi by the ranking analysis. N(i) then
comprises two parts: the number of true positives Nt(i) and the number of false
positives Nf(i). Therefore N(i)=Nt(i)+Nf(i). FDR at threshold Δi can be written
as RFD(i)=Nf(i) /N(i), which must be estimated since Nf(i) is unknown. To
improve the accuracy of estimating FDR, we propose a new strategy to obtain
FDR as an average of two estimates each derived from simulation under a
specific condition. The first estimate is carried out as follows.

For each gene, two samples of m replicates are simulated from a normal
distribution, one with a mean randomly set to be ȳJ1k ¼ 1

2 x̄J11k þ x̄J12k
� �

or
1
2 x̄J11k þ x̄J22k
� �

and variance σ1k
2 , another with a mean randomly set to be

ȳJ2k ¼ 1
2 x̄J21k þ x̄J12k
� �

or 1
2 x̄J21k þ x̄J22k
� �

and variance σ2k
2 , where x̄ hgk

J is the
mean of subsample h of the sample g for gene k produced by the RS procedure
in the observed data.

The process will produce M sets of simulated data, each subjecting to the
ranking analysis described in the previous section. For each simulated data set,
every ranked position has thus a corresponding T value that is denoted by Tk*1

J .
Since we are concerned about false positives, we consider only those genes that
are not significant in the original ranking analysis. Comparing Tk*1

J to Z̄ k* for
every ranking position will allow one to identify genes that are becoming
significant. The number of such genes in the J-th set of simulation data at the
threshold Δi is denoted by N(1,J,i).

Let N(1,i)=ΣJ=1
M N(1,J,i) /M, which is the mean number of N(1,J,i). For an

ascending series of threshold values, N(1,i) rises initially and declines when the
threshold value exceeds a certain value Δ. Define

f 1; ið Þ ¼ 2Nð1; iÞ
NðDÞ þ Nð1; iÞ ð7Þ

as the first estimate of FDR where N(Δ)=maxi=1
L N(1,i) and N(1,i)=N(Δ) when

Δi<Δ. f(1,i) is thus a decreasing function and bounded between 1 and 0 (see
Fig. 2).
The second estimate of FDR is obtained also from simulation. The
simulation of the two samples for each gene is done in the same way as the first
simulation, except that the two means are set to be equal, i.e.,
ȳJ1k ¼ ȳJ2k ¼ 1

2 x̄J11k þ x̄J12k
� �

or 12 x̄J21k þ x̄J22k
� �

. Also correspondingly for the
J-th simulation data set, ranking analysis of the T values leads to Tk*2

J , where
“2” represents the second simulation. Tk*2

J is compared to its average T̄k*2, and
the significances across all the ranking positions at thresholdΔi are counted as N
(2,J,i). Let N(2,i)=maxJ=1

M N(2,J,i). Since the noise distribution produced by the
RS approach from the simulated data agrees well with that produced by the RS
approach from the observed data (see Figs. 3B, 4C, and 4D), N(2,i) is a
reasonable estimate of Nf(i) for a given threshold Δi. However, to avoid the
possibility that RFD(i)=N(2,i)/N(i)=∞ occurs when N(i)=0, in particular, in the
extreme cases of which there is no or small expression difference between two
samples, we define

f 2; ið Þ ¼ Nð2; iÞ
NðiÞ þ Nð2; iÞ ð8Þ

as the second estimate of FDR. Eq. (8) shows that f(2,i)=1 when N(i)=0 and
N(2,i)≥1, f(2,i)=0.5 when N(i)=N(2,i), f(2,i)<0.5 when N(i)>N(2,i), and
f(2,i)=0 when N(i)≥1 and N(2,i)=0.



Fig. 3. Plots of Z values vs T values. The observed Z value (curve b) and
simulated Z value (curve c) were obtained by (A) the permutation approach and
(B) the RS approach. The observed microarray data of 3000 genes were obtained
in two samples, each consisting of 12 rats. The first set of the simulated
microarray data was produced using the pseudorandom generator and one set of
3000 observed means and two sets of 3000 observed variances in which no gene
was not given a treatment effect value. The simulated T values (curve a) were a
set of 3000 null scores produced from 100 repeated simulations of the first set of
the simulated data (see text).

Fig. 2. Estimation of FDR. f(1,i) and f(2,i) are two threshold functions and are
used to construct an estimation interval for estimate of FDR at thresholdΔi. RFD

(i) and R̂FD(i) are the true and the estimated FDR, respectively, at threshold Δi,
where RFD(i) was calculated by comparing genes identified by RAM with those
given treatment effect (G=10R).
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Although we intended to find lower and upper bounds for FDR, it can be
seen from Fig. 2 that although the two estimates of FDR provide two bounds for
FDR, f(1,i) does not remain as the lower bound nor the upper bound, same as
f(2,i). The role of the two in bounding FDR switches after a certain threshold
value. For this reason, we explore a single estimate of FDR, which value lies
between the two bounds. One conservative estimate is to give more weight to
the larger of the two bounds, which results in the third estimate of FDR,

f ð3; iÞ ¼ a1f ð1; iÞ þ bif ð2; iÞ; ð9Þ
where ai= f(1,i) /[f(1,i)+ f(2,i)] and bi=1−ai. We found that at threshold level
Δi, a better estimate of FDR is obtained by

fi ¼ 1
3

f 1; ið Þ þ f 2; ið Þ þ f 3; ið Þ½ �: ð10Þ

To smooth the estimates of FDR further, consider the difference between the
numbers of genes found to be significant at adjacent thresholdsΔi andΔi+1 and
define a recursive formula modifying the probability fi as

fi ¼ fipi þ fiþ1qi; ð11Þ
where pi=[N(i)−N(i+1)] /[1+N(i)−N(i+1)] and qi=1−pi. Eq. (11) suggests
that fi+1= fi if N(i)=N(i+1). Thus, the number of the false discoveries among
those found to be significant at thresholdΔi in the observed data is estimated by

̂Nf ðiÞ ¼ fiNðiÞ ð12Þ
and an estimate of FDR at threshold Δi is given by

̂RFDðiÞ ¼ ̂Nf ðiÞ=NðiÞ ¼ fi : ð13Þ
It can be seen from Fig. 2 that the line for the true value RFD(i) agrees well

with that for R̂FD(i), indicating that R̂FD(i) is a good estimate of FDR. We also
found that, if no gene in the simulation was found to be significant, R̂FD(i)
would be more than 0.5 at threshold Δi of f(1,i)< f(2,i) (the result is not shown).

Simulation results

Estimate of the null distribution

To determine if the empirical distributions obtained by the
permutation approach and the RS approach are appropriate
for the analysis of expression data, we simulated three sets of
microarray data each consisting of 3000 genes and two
samples of 12 replicates each. The means and variances for
the two sample of each gene are set to be one of observed
means and two of the observed, respectively. In our real
microarray data sets, the expression levels of 3000 genes were
measured in two different strains (the spontaneously hyper-
tensive rat and the stroke-prone spontaneously hypertensive
rat) each consisting of 12 rats. In the first simulation data set,
all 3000 genes were set to have no treatment effect. In the
second and third simulation data sets, treatment effects of
G=10R and G=30R, respectively, where R is a random
variable in the uniform distribution (0,1], were randomly
assigned to 30% of the genes.

In the ranking analysis, a set of Zk* values for each simulated
data set was computed from 100 permutations or 100 random
splits. As Zk* is an estimate of Tk* under the null hypothesis, a
desirable property is that Zk* has a linear relationship with Tk*.
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This property can be seen by plotting Zk* versus Tk*. Fig. 3
shows the plot of Z obtained by the permutation (Fig. 3A) and
RS (Fig. 3B) approaches. It can be seen from Fig. 3A that the Z
distribution obtained by the permutation approach from either
the observed or the first simulated data sets remarkably deviates
from the null distribution when |T| is large. More specifically, in
the tails of T, the observed Z values remarkably overestimate
the null scores, whereas the simulated Z values underestimate
the null scores. These patterns were also seen from simulation
incorporating different treatment effects on gene expression. In
Fig. 4A, the Z* values obtained by the permutation approach
from the second simulation data set in which 30% of the genes
were given treatment effect values of 10R are in between the Z
values obtained by the permutation approach from the first
simulation data set, in which no gene was given treatment
effect, and the null scores (simulated T values) when T>1.5
or < –1.5, whereas in Fig. 4B, Z* values from the third
simulation data set, in which 30% of the genes were given
treatment effect values of 30R, are much larger than the null
scores at T >3 or much smaller than the null scores at T < −3.
These results indicate that when the treatment effect contribu-
Fig. 4. Plots of Z values vs T values. The simulated Z values were obtained from the f
the simulated data of 3000 genes. In the first, second, and third simulation sets, treatm
genes, where R is a random variate in the uniform distribution (>0,1] (see text for si
text). The results shown in (A) and (B) were obtained by the permutation approach
ting to expression variations of genes is weak or lacking, the Z
distribution yielded by the permutation approach would
negatively deviate from the null distribution, i.e., Zk*≤Tk*>0
or Zk*≥Tk*<0, so that type I errors observed in the ranking test
would be more than those expected. However, when a large
treatment effect to a different extent contributes to expression
variations of a part of the genes, the Z distribution would
remarkably positively deviate from the null distribution, i.e.,
Zk*≥Tk*>0 or Zk*≤Tk*<0. In this case type II errors observed
in the ranking test would be much more than those expected.
These observations in the case of small samples are in fact a
general feature of the permutation approach (see Appendix A).

It can be seen from Fig. 3B, however, that the Z distributions
obtained by the RS approach from the observed and the first
simulated data sets and the simulated T distribution (the null
distribution) are almost overlapped with each other. This is also
shown in Figs. 4C and 4D, in which the Z* values were obtained
by the RS approach from the second and third simulation data
sets and the Z values from the first simulation data set. The
results similar to those shown in Figs. 4C and 4D were obtained
in the case of a sample size of 6. These results strongly suggest
irst (curve c), second (curve b in A and C), and third (curve b in B and D) sets of
ent effect values of G=0R, 10R, and 30R were randomly assigned to 30% of the
mulation). The simulated T values (curve a) were a set of 3000 null scores (see
and those shown in (C) and (D) were based on the RS approach.



Table 2
The results obtained by SAM and RAM from the simulated microarray data sets
of 3000 genes of which 30% were given treatment effect values of 8R and 30%
of the expression noise followed a gamma distribution and the rest followed a
normal distribution

SAM RAM

Δi N(i) N̂f (i) R̂FD(i)
%

Δi N(i) N̂f (i) Nf(i) R̂FD(i)
%

RFD(i)
%

0.00050 1127 1160 102.9 0.0676 1821 1296 1279 71.2 70.2
0.01035 351 292.5 83.3 0.0851 1715 1199 1199 69.9 69.9
0.01217 350 286 81.7 0.1025 1660 1147 1157 69.1 69.7
0.01943 346 282 81.5 0.1374 1505 753 1040 50.0 69.1
0.02073 345 277 80.2 0.1724 1372 462 938 33.7 68.4
0.02932 315 248 78.7 0.1900 1288 369 875 28.6 67.9
0.03368 311 239.5 77.0 0.2251 1137 295 764 25.9 67.2
0.04193 308 230 74.6 0.2428 984 232 657 23.6 66.8
0.05636 301 218.5 72.5 0.2782 802 172 523 21.4 65.2
0.06288 289 206.5 71.4 0.3138 401 82 230 20.4 57.4
0.06851 256 178 69.5 0.3677 102 21 21 20.6 20.6
0.08908 153 99 64.7 0.3858 99 20 20 20.2 20.2
0.11274 135 83 61.4 0.4039 97 19 19 19.6 19.6
0.12576 127 75.5 59.4 0.4405 95 18 18 18.9 18.9
0.13374 124 73 58.8 0.4589 92 17 17 18.5 18.5
0.14284 123 70 56.9 0.4775 89 16 16 18.0 18.0
0.14912 120 68 56.6 0.4961 87 15 15 17.2 17.2
0.15884 88 45.5 51.7 0.5337 83 14 15 16.9 18.1
0.16771 86 43 50.0 0.5909 79 12 13 15.2 16.5
0.18042 85 42 49.4 0.6103 77 11 13 14.3 16.9
0.18894 80 38 47.5 0.6494 74 10 11 13.5 14.9
0.19440 74 35 47.2 0.6692 72 10 10 13.9 13.9
0.19750 73 35 47.9 0.6892 71 9 9 12.7 12.7
0.20497 71 33 46.4 0.7502 68 8 9 11.8 13.2
0.20650 48 22 45.8 0.7918 65 6 8 9.2 12.3
0.21360 44 20 45.4 0.8344 64 6 7 9.4 10.9
0.21474 39 18 46.1 0.8560 61 6 5 9.8 8.2
0.21516 38 17 44.7 0.8779 60 5 5 8.3 8.3
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that the Z distribution, as an empirical distribution, produced by
the RS approach is a desirable approximation of the null
distribution and in particular it is independent of treatment effect
or sample size, which is essential for the rank test.

Estimate of FDR

Since it is generally unknown if a given gene is expressed
differently under two different conditions, it is not necessarily
best to use real data of gene expression to evaluate an FDR
estimator. Therefore, we also conducted a computer simulation
for comparing expression status (significance or insignificance)
of a gene identified by a method with its real status. In this
simulation study, we also generated two data sets of 3000 genes
in which treatment effect values of 10Rwere randomly assigned
to 10 and 30% of the genes, respectively, and sample size was
set to be 6 replicates. This simulation procedure was iterated 20
times. Four criteria, i.e., absolute average, maximum and
minimum, and variance of differences between the estimated
and the true numbers of the false discoveries across all R̂FD

(i)%≤λ obtained from these 20 two-sample simulated data sets
were used to assess an estimator. We set λ=40, 30, 20, 10, and
5%. Table 1 summarizes the results obtained by applying RAM
and SAM (the software comes from http://www-stat.stanford.
edu/~tibs/SAM/) to these simulated data sets in the situations of
10 and 30% of the genes given effect values of 10R. The results
shown in Table 1 clearly indicate that the RAM estimator has a
much better accuracy in estimating FDR than the SAM
estimator. In particular, for FDR of 5%, which is an important
threshold value in practice, the RAM estimate is, on average,
0.65 false discoveries with variance <1 and variation interval of
Table 1
Difference between the estimated and the true false discoveries at R̂FD%≤λ
obtained by SAM and RAM from the simulated microarray data of 3000
genes

Method λ Absolute average Variance Maximum Minimum

30% of genes received treatment effect values of G=10R
RAM 40 3.021 18.787 16 −17

30 2.398 9.659 7 −8
20 2.119 7.677 6 −8
10 1.363 3.554 4 −7
5 0.649 0.739 2 −1

SAM 40 5.309 55.240 11 −25
30 3.406 18.915 11 −9
20 3.044 16.582 11 −9
10 2.209 9.214 6 −4
5 1.850 8.684 6 −1

10% of genes received treatment effect values of G=10R
RAM 40 1.961 7.219 8 −5

30 1.471 3.963 6 −3
20 1.046 1.835 3 −3
10 0.641 0.763 2 −2
5 0.300 0.333 0 −1

SAM 40 3.182 18.129 12 −11
30 2.468 9.873 8 −4
20 2.048 7.268 7 −3
10 1.826 6.909 7 0
5 1.667 6.705 7 0

0.21815 26 11 42.3 0.9226 57 5 4 8.8 7.0
0.22433 19 7 36.8 1.0156 47 3 4 6.4 8.5
0.23141 19 7 36.8 1.0893 42 3 2 7.1 4.8
0.23953 15 6 40.0 1.1147 41 3 2 7.3 4.9
0.27464 14 4 28.5 1.1939 40 2 2 5.0 5.0
0.45645 5 1 20.0 1.3691 36 2 2 5.6 5.6
1.02531 1 1 100.0 1.4011 34 2 1 5.9 2.9
1.04895 0 1 NA 1.4340 32 1 1 3.1 3.1

2.2410 24 0 0 0 0

Nf(i) and RFD (i) are the true number and the rate of false discoveries according
to the comparison between identified and true genes differentially expressed in
the simulated data.
1–3 false discoveries, whereas the SAM estimate is, on average,
about 2 false discoveries with variance larger than 6 and
variation interval of 7 false discoveries. Fig. 2 shows the whole
profile of the RAM estimates of FDRs over all given thresholds
based on the second simulation data set. In this profile, the
estimated and true curves are well agreed, suggesting that the
RAM estimate is reliable.

Identification of differentially expressed genes

The exact distribution of the expression level of a gene is
unknown in microarray experiments. For some genes, normal
distributions may be appropriate, while for others gamma
distribution may be more accurate, and for some none of the

http://www-tat.stanford.edu/~tibs/SAM/
http://www-tat.stanford.edu/~tibs/SAM/


Table 3
Numbers of genes called significant and of the false discoveries estimated by
SAM and RAM from the observed microarray data sets of 7129 genes in four
replicate experiments provided in the SAM software

SAM (S0=3.46 at percentile=0.01) RAM

Δi N(i) N̂f (i) R̂FD(i)
%

Δi N(i) N̂f (i) R̂FD(i)
%

0.00676 4046 3736.4 92.3 0.04641 6834 5060 74.0
0.02311 4011 3682.4 91.8 0.10520 6392 4261 66.7
0.03355 3952 3621.4 91.6 0.16402 5956 3964 66.6
0.04874 3933 3591.4 91.3 0.22289 5539 1993 36.0
0.07252 3893 3551.5 91.2 0.28185 5144 1656 32.2
0.08402 3882 3536.5 91.1 0.34092 4736 1389 29.3
0.08731 3855 3499.5 90.7 0.40013 4188 1430 34.1
0.08885 3305 2955.7 89.4 0.45952 3752 1043 27.8
0.08977 3211 2879.7 89.6 0.51911 3245 553 17.0
0.09132 1936 1716.2 88.6 0.57893 2660 617 23.2
0.09278 1751 1529.3 87.3 0.63901 1795 100 5.6
0.09538 1739 1510.3 86.8 0.69939 1480 110 7.4
0.09691 1718 1487.3 86.5 0.76010 1220 71 5.8
0.09886 1703 1464.3 85.9 0.82118 783 61 7.8
0.10159 752 568.2 75.5 0.88266 310 17 5.5
0.10943 739 550.2 74.4 0.94457 61 2 3.3
0.11610 599 436.8 72.9 1.00697 58 2 3.4
0.12068 531 383.3 72.1 1.06988 57 1 1.8
0.13922 410 268.3 65.4 1.13336 57 1 1.8
0.15164 352 218.4 62.0
0.18234 268 155.9 58.1
0.19807 261 147.9 56.6
0.20716 213 116.9 54.9
0.33398 167 64.9 38.9
0.43301 124 39.9 32.2
0.57814 88 19.4 22.1
0.65578 74 12.9 17.5
0.76837 62 9.9 16.1
0.86358 46 5.9 13.0
1.24876 36 2.9 8.3
1.38245 26 1.9 7.6
1.60219 21 0.9 4.7
2.03175 12 0.9 8.3
2.43241 11 0.9 9.0
2.69035 3 0.9 33.3
4.19555 0 0.9 NA
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standard distributions may be adequate. When many thousands
of genes are examined simultaneously, a variety of distributions
is likely present. Therefore, it is appropriate to evaluate a
method using data generated from a mixture of distributions.
For simplicity, we limited ourselves in the simulation to using
gamma and normal distributions to yield data sets consisting of
3000 genes in two samples each having six replicates. Then at
random we mixed them together at a given proportion (for
example, 30% gamma distribution and 70% normal distribu-
tion) to construct a new set of microarray data. We applied SAM
and RAM to the simulation data set. The results are summarized
in Fig. 1B and Table 2, in which the exchangeability (fudging)
factor S0=10.75 at percentile 33%. One can find in Fig. 1B that
all dots on the plots are close to the expected lines, suggesting
that SAM fails to work on such data, whereas the other result in
Table 2 shows that RAM works very well for identifying genes
that are significantly differentially expressed and for the
estimation of FDR.

Application to the real microarray data

Both SAM and RAM were applied to the two-sample real
microarray data of 7129 genes obtained from two small
samples (four replicates for each sample) provided in the SAM
software package. The results shown in Table 3 are helpful for
explaining the observation in Table 1 of Tusher et al. [16]. A
larger S0 (S0=3.3) is the primary cause for SAM’s poor
performance: 12% FDR in the 48 genes identified to be
significant at threshold Δ=1.2. It can be seen from Table 3 that
RAM found 61 genes having significant expressional change at
an acceptable FDR level of 3.3%, whereas SAM identified only
21 genes at an acceptable FDR level of 4.7%. The difference of
40 genes between both is because of an unnecessarily larger
fudging factor (S0=3.4) used in SAM. Indeed, some of 40
genes have d>σ<1, suggesting that a large value of S0 indeed
led some truly differentially expressed genes to be missed by
SAM.

Discussion

In conventional statistical resampling, permutation is a
popular approach to estimate a null distribution. However, as
seen from our analysis and as indicted in Appendix A, the
distribution-free method based on permutations would be
generally biased because for microarray data analysis small
sample sizes limit the number of distinct permutation samples
and ranking the T statistics at each permutation does not
completely remove the treatment effect contributing to gene-
expression variations. The RS approach is developed in this
paper to circumvent the aforementioned problems of SAM. The
resulting RAM has the advantage of being insensitive to the
treatment effect that often presents in real data and having a
better estimate of FDR. Another important advantage of RAM
is that it works well for small sample sizes which is particularly
useful for analyzing microarray data that often have small
sample sizes. In addition, the RS approach can be easily
extended to the pair data set (see Appendix B).
FDR is often used to control error rate in the BH procedure
[18] and in SAM [16,22]. In practice, for a multiple-test method
based on t statistics, it is important to obtain an accurate
estimate of FDR. In SAM, the FDR estimate is realized through
the permutation approach in which fluctuations around
expectation occur among permutated samples. The fluctuations
would be impacted on by the data themselves, i.e., sample size,
treatment effect, and data noise. The RAM estimator of FDR is
based on a two-simulation strategy so that it avoids these
impacts on the estimate of FDR. Our simulation results indicate
that the RAM estimator of FDR is generally accurate at a given
threshold of interest.

In an idealized setting in which all expression levels are
normally distributed, SAM and RAM both work well for
identifying differentially expressed genes. However, in the case
in which most of the expression levels follow a normal
distribution and a small fraction, for example, 30% of the genes,
possibly follow a gamma distribution, SAM performs poorly or
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even fails to work due to a larger fudge factor S0 whereas RAM
continues to performs well. In addition, small sample size
makes it possible to produce sample variances far smaller than 1
in a large-scale gene-expression profile. This situation, as seen
in Tusher et al. [16], also produces a larger fudging factor for
SAM, but in RAM this fudging impact can effectively be
excluded.
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Appendix A

Suppose we have two classes Xk={xk1, …, xkm) and Yk={yk1,
…,ykm) of m replicates for gene k. A permutation produces two
resampling classes Xk′={xk1,…, xkm−r,yk1,…,ykr} and Yk′={xk1,
…,xkr, yk1,…,ykm−r. From these resampling class data, we have
two resampling means,

X̄ k V¼ 1

m

Xm�r

j¼1

xkj þ
Xr
j¼1

ykj

 !
¼ 1

m

Xm�r

j¼1

xkj þ 1

m

Xr
j¼1

ykj; ðA1aÞ

Ȳ k V¼ 1
m

Xr
j¼1

xkj þ
Xm�r

j¼1

ykj

 !
¼ 1

m

Xr
j¼1

xkjþ 1
m

Xm�r

j¼1

ykj: ðA1bÞ

Let xkj=μk+τxk+exkj and ykj=μk+τyk+eykj, where μk is
overall mean (expectation) for expression levels of gene k, τxk
and τyk are assumed to be treatment effects contributing to the
expression variation of gene k, and exkj and eykj are expression
noises. Thus, these two means can also be expressed as

x̄k V¼ lk þ
1
m

m� rð Þsxk þ rsyk
� �þ 1

m

Xm�r

j¼1

exkj þ 1
m

Xr
j¼1

eykj;

ðA2aÞ
ȳk V¼ lk þ
1
m

rsxk þ m� rð Þsyk
� �þ 1

m

Xr
j¼1

exkjþ 1
m

Xm�r

j¼1

eykj;

ðA2bÞ
where r is the number of exchanged members between
two classes. It is clear that with the difference between X̄ k′
and Ȳ k′, the treatment effect difference is

d skð Þ ¼ 1
m

m� rð Þsxk þ rsyk
� �� 1

m
rsxk þ m� rð Þsyk
� � ¼ 0

if r=m/2, otherwise, d(τk)≠0. In addition, the rank of Z values
across all positions at each permutation changes the Z values in
position k* in the rank space, so that the component dealing
with d(τk*) in the Z value in position k* in the rank space,
that is, 1
M

PM
J¼1 =d sJk4

� �
=rJk4p0; where d s1k4

� �
=r1k4 > 0; N ;

d sMk4
� �

=rMk4 > 0 or d s1k4
� �

=r1k4<0; N ; d sMk4
� �

=rMk4 < 0; rjk4 i s
a pooled standard deviation of two samples in position k*
at permutation J. This indicates that the Z distribution
obtained by the permutation approach contains treatment
effect differences for the microarray experiments if r≠m/2.
This is why a large treatment effect on expression levels of
a part of the genes leads to an obviously “positive de-
viation” of the Z distribution obtained by the permutation
approach from the null distribution as seen in Figs. 3A, 4A,
and 4B, say, Zk

*≥Tk*≥0 or Zk
*≤Tk*≤0, where Tk*=d(ek*)/

σk* is a null score of the T statistic.
For no treatment effect, i.e., τxk=τyk=0, and for small

sample size for gene k, Σek≥0 or Σek≤0, and hence, Eqs.
(A1a) and (A1b) are changed to

x̄ V¼ 1
m

Xm�r

j¼1

exkj þ 1
m

Xr
j¼1

eykj

¼ 1
m

Xm
j¼1

exkj � 1
m

Xr
j¼1

exkj þ 1
m

Xr
j¼1

eykj

¼ ēxk � ēxk rð Þ þ ēyk rð Þ; ðA3aÞ

ȳk V¼
1
m

Xm�r

j¼1

eykj þ 1
m

Xr
j¼1

exky

¼ 1
m

Xm
j¼1

eykj � 1
m

Xr
j¼1

eykj þ 1
m

Xr
j¼1

exky

¼ ēyk � ēyk rð Þ þ ēxk rð Þ: ðA3bÞ

In the difference between X̄ k′ and Ȳ k′, there is an error
difference,

dðekÞ ¼ ð ēxk � ēykÞ � ½ ēxkðrÞ þ ēxkðrÞ� þ ½ ēykðrÞ þ ēykðrÞ�
¼ dðekÞ � 2 ēxkðrÞ þ 2 ēykðrÞ
¼ dðekÞ þ 2d½ekðrÞ�; ðA4Þ
where d(ek)=exk−eyk and d[ek(r)]= ē yk (r)− ē xk (r). It is clear
from Eq. (A4) that d(εk)≠ d(ek) if d[ek(r)]≠0. On the
other hand, due to and ē xk(r)∈ ē xk and ē yk(r)∈ ē yk, d[ek(r)]=
ē yk (r)− ē xk (r) is negatively related to d(ek)= ē xk− ē yk, that is, if
d(ek)>0, then d[ek(r)]≤0 or if d(ek)<0, then d[ek(r)]≥0.
Again, the rank of the Z value across all positions leads
to d[ek*

1 (r)] /σk*
1 ≥0 ,…,d(ek*

M))/σk*
M≥0 or d(ek*

1 (r))/σk*
1 ≤0,…, d

[ek*
M(r)]/σk*

M≤0, consequently, the average of d[ek*
J (r)]/σk*

J

in position k* over all permutations is larger or less than
or equal to 0, that is, 1

M

PM
J¼1 d eJk4 rð Þ� �

=rJk4z0 or 1
M

PM
J¼1

d eJk4
� �

rð Þ�=rJk4V0; which then results in a “negative deviation”
of the Z distribution from the null distribution as seen in Figs.
3A, 4A, and 4B, i.e., Zk*≥Tk*≤0 or Zk*≤Tk*≥0.

Appendix B

For paired data, since two samples of mk observed values
(x1k ,…, xmkk) and (y1k,…,ymkk) become a sample of mk distant
values (d1k,…,dmkk), k=1,…, N, the sample mk of replicates for
distances can also be at random cut into two subsamples. Let
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dik=xik−yik=dk+exik−eyik=dk+eik, i=1,…, mk, where dk is the
difference between treatment effects on the expression of gene
k. We then have d̄ k ¼

Pmk
i¼1ðdk þ eikÞ=mk ¼ dk þ ēk : In two

subsamples at split J, two subsample means are expressed as
d̄ 1k
J =dk+ ē x1k

J − ē ylkJ and d̄ 2k
J =dk+ ē x2k

J − ē y2kJ , where ē gik
J is the

average of errors in subsample i at split J for gene k in the
system g (g=x, y). Therefore, ē k is estimated by

ēJk ¼ 1
2

d̄
J
1k � d̄ J

2k

� 	
¼ 1

2
dk þ ēJx1k � ēJy1k � dk � ēJx2k þ ēJy2k

h i

¼ 1
2

ēJx1k � ēJy1k

� 	
� ēJx2k � ēJy2k

� 	h i
¼ 1

2
ēJx1k � ēJx2k
� �þ ēJy1k � ēJy2k

� 	h i
,

say, ē k in the paired data is equivalent to that in the unpaired data.
The null score of the T statistic is estimated by the Z -value:

Zj
k ¼

d̄ kffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðdkÞ
mk

s ¼ ēJkffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðdkÞ
mk

s ,

where σ2(dk) is the sample variance of distances between two
paired data for gene k.

Appendix C. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.ygeno.2006.08.003.
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