A New Epidithiodioxopiperazine Metabolite Isolated from Gliocladium roseum YMF1.00133

Jin Yan DONG, Wei ZHOU, Lei LI, Guo Hong LI, Ya Jun LIU, Ke Qing ZHANG*

Laboratory for Conservation and Utilization of Bioresources, Yunnan University, Kunming 650091

Abstract: Glioclatine, a novel epidithiodioxopiperazine was isolated from wheat solid-substrate fermentation of Gliocladium roseum YMF1.00133. Its structure was elucidated by HRESI-MS and NMR spectra.

Keywords: Glioclatine, epidithiodioxopiperazine, Gliocladium roseum.

As part of our going search for new nematicidal materials from fresh water fungi, we have found that nematicidal compounds, gliocladine A-E, verticillin A, 11'-deoxyverticillin A, sch52900 and sch52901, belonging to a series of epipolythiodioxopiperazines, were produced by a strain of Gliocladium roseum YMF1.00133 isolated from the submerged woody substrate collected in freshwater habitat in Yunnan province^{1,2}. In continuation of our investigation on epipolythiodioxopiperazines from this fungus, here we describe the structural elucidation of one new *epi*dithiodioxopiperazine metabolite, glioclatine 1 (Figure 1).

Gliocladine C (2): R=OH

^{*} E-mail: Kqzhang1@yahoo.com.cn

Jin Yan DONG et al.

Compound 1 was isolated as a white amorphous powder. Its HRESIMS showed an $[M+H]^+$ ion at m/z 449.1136 (calcd. 449.1133), corresponding to the molecular formula $C_{23}H_{20}N_4O_2S_2$ which contained one oxygen atom less than that of gliocladine C 2^2 (Figure 1). The NMR data of 1 were very similar to that of 2. The most striking differences in the NMR data of 1 compared to that of 2 were the replacement of the hydroxymethine at δ_C 83.5 d with an methylene carobon at δ_C 45.0 t. The difference of chemical shift of the ¹³C NMR signals for C-10a, C-10b, C-11a, C-3', C-5a of 1 relative to those of 2 also revealed that the methylene carbon was assigned to C-11. In addition, the C-11 oxygenated methine unit ($\delta_{\rm H}$ 6.68 s) in the ¹H NMR spectra of 2 was also replaced by the two additional one-proton singlets at δ_H 3.45 d and 4.45 d with the same coupling constants (J=15.0 Hz) of 1, which were in correspondence with the carbon signal at $\delta_{\rm C}$ 45.0 t in the ¹³C NMR spectra based on the HMQC experiment. And two hydrogens at δ_H 4.45 d and 3.45 d were assigned to be in α and β configurations, respectively, from the HMBC experiment, in which long--range correlations were observed from δ_H 4.45 to δ_C 133.6 (C-10a), 56.2 (C-10b), 75.1 (C-11a), 166.6 (C-1), 117.4 (C-3') and from δ_H 3.45 to δ_C 84.2 (C-5a), 133.6 (C-10a), 56.2 (C-10b), and 75.1

No.	1			2	
	$\delta_{\rm H}$	δ_{C}	HMBC	δ_{H}	δ_{C}
1	\	166.6 s	\	\	166.1 s
3	\	74.3 s	\	\	74.5 s
4	\	163.1 s	λ	١	163.0 s
5a	6.44 (s)	84.2 d	C-6a, C-10a, C-10b, C-11,C-11, C-3'	5.98 (s)	83.5 d
6a	\	149.9 s		\	148.7 s
7	6.93 (d, 7.7)	110.0 d	C-9, C-10a	6.64 (d, 8.0)	110.5 d
8	7.23 (m)	129.3 d	C-6a, C-10	6.90 (t, 7.6)	129.2 d
9	6.89 (t, 7.4, 7.5)	119.3 d	C-7, C-10a	6.57 (t, 7.4)	119.4 d
10	7.45 (d, 7.6)	124.6 d	C-8, C-6a, C-10b	7.56 (d, 7.5)	124.6 d
10a	\	133.6 s	\	\	133.3 s
10b	\	56.2 s	\	\	62.4 s
11	βH: 3.45 (d, 15.0), αH: 4.45 (d, 15.0)	45.0 t	C-5a, C-10a, C-10b, C-11a C-10a, C-10b, C-11a, C-1, C-3'	6.68 (s)	80.6 d
11a	\	75.1 s	\	\	78.8 s
12	2.99 (s)	27.3 q	C-1, C-3	2.69 (s)	27.1 q
13	1.98 (s)	18.1 q	C-3, C-4	1.72 (s)	17.9 q
1'a	\	138.7 s	\	\	138.3 s
2'	7.42 (br s, 2.5)	123.7 d	C-3', C-3a', C-1a', C-10b	7.49 (s)	123.5 d
3'	\	117.4 s	\	\	115.6 s
3'a	\	126.0 s	\	\	126.9 s
4'	7.94 (d, 8.0)	122.2 d	C-3', C-1a', C-3a	8.25 (d, 7.1)	122.0 d
5'	7.08 (t, 7.9)	120.0 d	C-7', C-3a'	7.09 (m)	119.6 d
6'	7.23 (m)	123.0 d	C-5', C-1a'	7.09 (m)	121.9 d
7'	7.56 (d, 8.0)	112.6 d	C-3a', C-5'	7.42 (d, 7.2)	112.3 d

Table 1 The NMR data of compound **1** and **2** in pyridine- d_5^a (δ ppm, JHz)

^aThe NMR data for compound **1** were recorded on Bruker AM-400MHz.

924 A New *Epi*dithiodioxopiperazine Metabolite Isolated from *Gliocladium roseum* YMF1.00133

(C-11a). This was also confirmed by the NOE correlations between δ_H 3.45 d and H-10 observed in the NOESY spectrum of **1** which implied that H_β -11 and the C-10a-C-10b bond are also oriented in *trans* to H-5a³. Hence it was clear that the oxomethine carbon at C-11 in **2** is deoxygenated to a methylene group in **1**. Thus, the structure of **1** was identified as shown in **Figure 1**, and named glioclatine.

Compound 1: White amorphous powder; $[\alpha]_{D}^{17.8}$ +487.2 (*c* 0.39, pyridine); UV (pyridine) λ_{max} (ϵ) 290.2 (0.1095), 283.0 (0.1084), 205.4 (0.7975) nm; IR (film) v 3442, 1675, 1611, 1550, 1483, 1468, 745 cm⁻¹; FABMS *m*/*z* (rel. int): 449[M+H]⁺(2), 385[MH-2S]⁺ (5), 328 (4), 232 (18), [bis-indol-3-yl), 176 (4), 159 (3), 97 (7), 80 (100); HRESI-MS *m*/*z*: 449.1136[M+H]⁺ (calcd. for C₂₃H₂₁N₄O₂S₂ 449.1106); The NMR spectral data see **Table 1**.

Acknowledgments

The authors gratefully acknowledge support for this work from the National Natural Science Foundation of China (No. 30570059 and No. 20562015) and Yunnan Provincial Natural Science Foundation (No. 2005C0005Q and No. 2005NG03).

References

- 1. J. Y. Dong, Z. X. Zhao, L. Cai et al., Fungal Diversity, 2004, 1, 125.
- 2. J. Y. Dong, H. P. He, Y. M. Shen et al., J. Nat. Prod., 2005, 68, 1510.
- 3. C. Takahashi, K. Minoura, T. Yamada et al., Tetrahedrom, 1995, 51(12), 3483.

Received 9 January, 2006