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ABSTRACT

The goal of linkage mapping is to find the true order of loci from a chromosome. Since the number of
possible orders is large even for a modest number of loci, the problem of finding the optimal solution is
known as a NP-hard problem or traveling salesman problem (TSP). Although a number of algorithms are
available, many either are low in the accuracy of recovering the true order of loci or require tremendous
amounts of computational resources, thus making them difficult to use for reconstructing a large-scale
map. We developed in this article a novel method called unidirectional growth (UG) to help solve this
problem. The UG algorithm sequentially constructs the linkage map on the basis of novel results about
additive distance. It not only is fast but also has a very high accuracy in recovering the true order of loci
according to our simulation studies. Since the UG method requires n � 1 cycles to estimate the ordering
of n loci, it is particularly useful for estimating linkage maps consisting of hundreds or even thousands of
linked codominant loci on a chromosome.

ALTHOUGH more and more genomes are being
sequenced, high-quality linkage maps for many

organisms remain useful. For a majority of organisms,
obtaining appropriate linkage maps will be a necessary
step for understanding their genetic architecture. With
the advance of technology as well as increasing demand
of high-density linkage maps, the number of loci simul-
taneously examined in experiments is steadily growing,
which presents a considerable computational challenge
for estimating the underlying linkage map since the
number of possible orders of loci increases rapidly
with the number of loci (Olson and Boehnke 1990;
Mester et al. 2003). The construction of linkage maps
has been recognized as a special case of the traveling
salesman problem (TSP) (Liu 1998). The TSP is a clas-
sical non-deterministic polynomial time (NP)-complete
problem (Wilson 1988; Olson and Boehnke 1990;
Falk 1992) that has attracted the attention of mathe-
maticians and computer scientists. Currently, there are
two approaches to tackle the problem. One is to find the
answer by performing exhaustive searches and the other
is to find approximations. Even for just 10 loci on a
chromosome, there are 1,814,400 possible orders. Thus
it is extremely time consuming (if not entirely impos-
sible) to exhaustively search all possible orders when the
number of loci on a chromosome is .30 (Mester et al.
2003). Therefore algorithms to obtain approximate
optimal solutions are the only practical approach for
large-scale linkage mapping (Liu 1998). To date, several

approximation algorithms are available, including se-
riation (Buetow and Chakravarti (1987), simulated
annealing (SA) (Thompson 1984; Weeks and Lange
1987), branch and bound (BB) (Lathrop et al. 1985),
Lander–Green (LG) algorithm (Lander and Green

1987), and stepwise likelihood (Lathrop et al. 1984).
Many of these algorithms have been implemented in
software packages such as LINKAGE (Lathrop et al.
1984), MAPMAKER/EXP (Lander et al. 1987), LINKAGE
MAP (Eppig and Eicher 1983), JoinMap (Stam 1993),
LINKAGE-1 (Suiter et al. 1983), GMendel (Echt et al.
1992), and PGRI (Lu and Liu 1995). Recently Mester

et al. (2003) proposed a promising genetic and evolu-
tionary algorithm (GEA) for constructing large-scale
genetic maps. The GEA searches for optimal solutions
adaptively by mimicking the evolutionary process of a
population that includes mutation, recombination, and
selection. In addition to the GEA, Mester et al. (2003)
also combined their GEA with the 2-Opt or 3-Opt (Lin
and Kernighan 1973) to obtain a procedure called evo-
lutionary strategy (ES).

All the approximate algorithms employ certain crite-
ria to search for an optimal order of a given set of
loci. Proposed criteria include Lalouel’s least squares
( Jensen and Jorgensen 1975; Weeks and Lange 1987),
sum of adjacent recombination fractions (SARF) (Falk
1992), product of adjacent recombination fractions
(PARF) (Wilson 1988), probability of double recombi-
nants (PDR) (Knapp et al. 1989), sum of adjacent LOD
score (SALOD) (Weeks and Lange 1987), and SALOD
divided by the equivalent number of informative meio-
ses (SALEQ) (Edwards 1971). Olson and Boehnke
(1990) compared these criteria and concluded that
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SARF and SALEQ were the best overall criteria. These
two criteria are derived on the basis of the assumption
that the true order of a set of loci has a minimum SARF
or maximum SALOD. Although the principle appears
sound, their performance may be affected by experi-
mental errors, sample size, interference of recombina-
tion, and double crossovers (Mester et al. 2003). In
general, the computation of this type of algorithm
remains very time consuming.

An alternative approach is to construct the linkage
map sequentially. That is, start with a small map and add
loci into it one at a time. Ellis (1997) proposed such
an algorithm called neighbor mapping (NM), which
used ideas similar to the neighbor-joining (NJ) method
(Saitou and Nei 1987) for phylogeny reconstruction.
One advantage of NM is its speed; unfortunately, its
accuracy is not particularly high. The purpose of this
article is to present a novel sequential approach called
unidirectional growth (UG), which has all the advan-
tages of the NM method but with much higher accuracy
in recovering the true order of a given set of linked loci.

THEORY AND ALGORITHM

Consider a set of loci whose order in a chromosome is
unknown. We are interested in estimating this unknown
order of loci from distances defined between each pair
of loci. A map of a given nonempty set of loci is defined
throughout this article as an ordered list of some or all
of the loci in the set. Given a set of loci, the smallest map
has only one locus and the largest map includes all the
loci available. The largest map is also called a complete
map while a smaller map is called a partial map.
Graphically a map is conveniently represented as a list
of symbols separated by hyphens. For example, both x-y-
z and y-z-x are maps of the three loci x, y, and z. A correct
map of a set of loci is a map such that the order of the
loci in the map is the same as the true order. Each of the
original loci is regarded as a simple locus and a partial
map is regarded as a composite locus.

The approach we advocate for estimating the map of a
given set of loci requires measures of closeness between
each pair of loci, which are referred to as distance. Let dij
represent the distance between two loci i and j. Then the
distance is said to be additive if dij ¼ dik 1 djk for every
three loci (from the locus set) such that locus k lies
between the two. The novel algorithm to be described
stemmed from two theorems about additive distance.

Theorem 1. For a set of n loci with distance dij between loci i
and j, define

Tij ¼ 2dij � ðSi 1 SjÞ; ð1Þ

where

Si ¼
X
k 6¼i

dik : ð2Þ

Suppose that the true linkage map is 1-2-3- . . . -n; then

minðT12;Tn�1n;T1nÞ ¼ min
i, j

ðTijÞ ð3Þ

if the distance is additive (see appendix a for proof).

This theorem indicates that for an additive distance at
least one terminal locus of the map of a set of loci can be
determined through Equation 3. Furthermore, we have

1
2ðT12 1Tn�1nÞ � T1n ¼ ðn=2Þðd12 1 dn�1nÞ � 2d1n; ð4Þ

which is clearly negative when loci are equally spaced. If
the spacing between loci is random, then Eðd1nÞ ¼
ðn � 1ÞEðd12Þ, so the expected value of the above
expression is also negative. Therefore, there is a large
chance that one of the T12 and Tn�1n is smaller than T1n

particularly with increasing n, which suggests that one
terminal of the complete map (i.e., an end of the com-
plete map) is likely found through Equation 3. When
T1n is the smallest among the three, it will lead to the
identification through Equation 3 of both terminal loci.

For a sequential algorithm for estimating a map on
the basis of distance, it is necessary to update the
distances during the process of reconstructing the com-
plete map. It is highly desirable to maintain additivity for
the updated distances. For a set L ¼ {1, 2, . . . , n} of loci
with additive distance dij , if x-y is a terminal map, then
fuse x and y into a composite locus (xy) and define its
distance to a simple locus i as

diðxyÞ ¼ ðdix 1 diy � dxyÞ=2

or

diðxyÞ ¼ minðdix ; diyÞ;

which will retain additivity for the updated distances,
which can be proved as follows. Without loss of
generality, assume that x is the terminal locus of the
map. Then, because of additivity, dix $ diy and diðxyÞ ¼
½ðdiy 1 dxyÞ1 ðdiy � dxyÞ�=2 ¼ diy ¼ minðdix ; diyÞ. There-
fore, the updated distance defined on the set L-{x, y} 1
{(xy)} is the same as the original distance defined on the
set L-{x}. Since x is the terminal locus, additivity is thus
retained.

Taking advantage of the above results, a complete
map can be reconstructed by first determining a
terminal of the map and then growing the map se-
quentially by adding one locus at a time. The following
theorem provides the basis for a strategy to extend a
partial map (see appendix b for proof).

Theorem 2. Suppose that the true map of n loci is 1-2- . . . -n.
Then for additive distance dij ,

H12 ¼ minn
i¼2ðH1iÞ; ð5Þ

where
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H1i ¼ ðn � 1Þd1i � Si : ð6Þ

The algorithm: The above two theorems naturally
lead to an algorithm for estimating the map of a given
set of loci sequentially. In a nutshell, the algorithm first
searches for one end of the map and then adds an
adjacent locus to the map one at a time until it is
completed. Because once a terminal is determined, the
direction with which the map grows remains un-
changed, we refer to this novel approach as the UG
algorithm. The detailed steps of the UG algorithm are as
follows:

Step 1: Determine a terminal map and growth direction.
Compute Tij for all i , j. The pair of loci x and y that
result in the smallest T-value is taken as a terminal
map x-y, which is designated as locus n1 1. The
distance between locus n1 1 and a simple locus i is
defined as

din11 ¼
1
2ðdix 1 diy � dxyÞ ifðdix 1 diyÞ. dxy
0 otherwise:

�
ð7Þ

Compute with the newly defined distance

Hin11 ¼ ðn � 2Þdin11 � Si : ð8Þ

The locus z that minimizes the value of Hin11 is chosen
as the next locus to be added to the terminal map.
The resulting partial map (the n 1 2 locus) will be x-
y-z if dxz . dyz or z-x-y otherwise. The first situation
indicates that all the subsequent growths will be from
the left to the right and the second from the right to
the left. Assign k ¼ 2 and proceed to the following
steps.

Step 2: Update distance. Compute the distance between
composite locus n1 k and a simple locus i as

din1k ¼ minðdin1k�1; dijÞ; ð9Þ

where j is the simple locus that leads to the composite
locus n1 k by its inclusion to the n1 k� 1 composite
locus.

Step 3: Grow map. Compute Si for each simple locus i
with updated distance and

Hin1k ¼ ðn � k � 1Þdin1k � Si : ð10Þ

The locus that gives the smallest H-value is then added
to the partial map. The resulting new partial map is
designated as locus n 1 k 1 1.

Step 4: Repeat steps 2 and 3 until a complete map is
obtained.

DEFINING DISTANCES BETWEEN LOCI FOR USE
WITH THE UG ALGORITHM

The theory and algorithm established above calls for
additive distance between loci. In general, distance
between loci has to be estimated from relevant exper-
imental data, which are often the frequencies of re-
combination between each pair of loci observed from
comparing genotypes from the offspring to those from
their parents. Estimate r̂ ij of the recombination fraction
rij between loci i and j, which typically can be obtained
by the EM algorithm (Liu 1998). Immediately a distance
between a pair of loci can be defined as dij ¼ r̂ ij . Such a
distance should be reasonable when the recombination
fraction between the pair of loci is small. When the
recombination fraction is sufficiently high between two
loci, a double crossover may occur frequently, which
typically leaves no trace in the data. As a result, the
observed recombination frequencies between loci of
high recombination rate may be downwardly biased.
Therefore a correction is desirable to achieve a distance
that is more addable.

Suppose that rij is the recombination frequency
between loci i and j. If locus k lies between the two,
then according to the three-point analysis (Kosambi
1944; Liu 1998), rij can be expressed as

rij ¼ rik 1 rjk � 2lij rikrjk ; ð11Þ

where lij is a constant known as the coefficient of
coincidence, which is defined as lij ¼ r̂ ijk=r̂ ik r̂ jk . Note
that lij ¼ 1 corresponds to the classical case of crossover
independence (Haldane 1919) and lij ¼ 2rij to the case
of crossover interference (Kosambi 1944). One obvious
corrected distance between loci i and j is defined as

dij ¼ r̂ ik 1 r̂ jk : ð12Þ

The problem is that in general one does not know in
advance which locus lies between loci i and j. Therefore
to make use of Equation 12, we need to determine if a
given locus should be considered as one between loci i
and j. It appears that a minimal criterion is that r̂ ij . r̂ ik
and r̂ ij . r̂ jk . Since there may be multiple loci lying
between the loci i and j, and for each such locus k,
rik 1 rkj ¼ rij 1 2lij rikrjk , we therefore define a distance
between loci i and j as

dij ¼ r̂ ij 1
2lij
Nij

X
k

r̂ ik r̂ jk ; ð13Þ

where the summation is taken over all loci k, which
satisfies r̂ ij . r̂ ik and r̂ ij . r̂ jk , and Nij is the number of
such loci. The definition implies that dij ¼ r̂ ij when
there is no locus that appears to be between loci i and j.

We found that letting lij ¼ 1 in Equation 13 works
quite well so throughout this article lij is assumed to
be 1 for all loci considered. Figure 1 shows an example
of the computation of distance dij computed from
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Equation 13. In this example we have d12 ¼ r12 since no
other locus satisfies the condition r12 . r1k and r12. r2k .
For loci 1 and 3, we have d13 ¼ r13 1 2r12r23 since
r13 . r12 and r13 . r23. Similarly, we have d14 ¼ r14 1

r12r24 1 r13r34, d23 ¼ r23, d24 ¼ r24 1 2r23r34, and
d34 ¼ r34.

NUMERICAL EXAMPLES

We first illustrate the UG algorithm using a hypothetic
data set (see Table 1) that was generated from the map
(1-4-5-2-6-3-7) in which all the loci are codominant and
the distances between adjacent loci are all 10 cM. As the
algorithm indicates, the first step is to find a terminal
map through Equation 3. It turns out that T14 is (see
Table 2) the smallest T-value (below the diagonal in
Table 2). Therefore according to the algorithm the
terminal map is 1-4, which is also designated as
composite locus 8. After computing the distance be-
tween locus 8 and each of the remaining simple loci
using Equation 7, it is found from Table 3 and Equation
8 that locus 5 is the next locus to be added to the map.
Since d54 ¼ 0.1 , d51 ¼ 0.22, the map grows into 1-4-5,
which is designated as locus 9. This completes step 1 of
the algorithm. In the second step, d9i (i ¼ 2, 3, 6, 7) is
computed using Equation 9, and in the third step H9i is
computed using Equation 10. It turns out that H92 is the
smallest (see Table 3), which leads to the partial map 1-4-
5-2, which is designated as locus 10. Repeating steps 2
and 3, it is found in Table 3 that the next locus to be

added is locus 6, then locus 3, and finally locus 7. The
complete map is thus estimated to be 1-4-5-2-6-3-7,
which is the same as the true map.

To see how the UG algorithm performs in reality, we
applied it to a real data set of 26 loci on barley
chromosome I from the North American Barley Ge-
nome Mapping Project (see Liu 1998, p. 288). For the
purpose of comparison, we applied both the UG and the
NM algorithms to this data set, which yielded maps A
and C, respectively, in Figure 2. Also included is the map
(B) based on 1000 bootstrap samples from Liu (1998,
p. 297) in statistical genomics-linkage, mapping, and
QTL analysis. It is obvious that maps A and B are almost
identical. The only notable difference is the positions of
three pairs of loci. For the given observed data set, map
A appears to be reasonable because the recombination
fraction between loci BCD265B and Dhn6 is 7.97, which
is larger than those between loci TubA1 and BCD265B
(0.75) and between TubA1 and ABG3 (4.8). A similar
situation also occurs among loci ABA3, ABG484, Pgk1,
and ABR315. In comparison, there are considerable
differences between maps B and C. It is noteworthy that
sums of adjacent distances on linkage maps A, B, and C
are, respectively, 132.8, 148.5, and 151 cM, which sug-
gests that linkage map A is the best among these three
linkage maps according to the principle of minimum
SARF (Falk 1992; Liu 1998).

PERFORMANCE OF THE UG ALGORITHM

Since few real data sets are available with known maps
of the loci involved, we use computer simulation to
generate data so that the performance of the UG
algorithm can be compared to those of some widely
used approaches such as NM, SA, SA-Opt2, and ES-2Opt
(Mester et al. 2003). Although we carried out many
comparisons, we present some representative results
only for four numbers of codominant loci: 6, 30, 50, and
100. The latter two cases represent relatively large maps.
For each number of loci, two types of map are
considered. The first one is an equal distance (ED)
map in which all recombination distances between
adjacent loci are set to be 10 cM. The second one is a
random distance (RD) map in which the distance
between the adjacent loci is set to be a value randomly
selected from the five possible values: 10, 15, 20, 25, and
30 cM.

The simulation starts with two isogenic lines, repre-
senting the paternal and maternal lineages, respectively.
We employed the point process model by Foss et al.
(1993) in our simulations. For each meiosis resulting in
the F1 individuals, recombination events are assumed to
occur between two adjacent loci with a certain proba-
bility that is proportional to the distance (in centimor-
gans). We considered both the presence and the
absence of recombination interference. In the case of
no interference, recombination between each pair of

Figure 1.—An example of a linkage map of four linked loci
in which there are three adjacent intervals (1-2, 2-3, and 3-4)
and three nonadjacent intervals (1-3, 2-4, and 1-4).

TABLE 1

Recombination fractions between loci of the linkage map
1-4-5-2-6-3-7, where each of the adjacent intervals was

assigned to be 10 cM

Locus

Locus 1 2 3 4 5 6

2 0.30
3 0.49 0.20
4 0.10 0.20 0.40
5 0.20 0.10 0.30 0.10
6 0.40 0.10 0.10 0.30 0.20
7 0.50 0.30 0.10 0.49 0.40 0.20
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adjacent loci is independently simulated between any
two nonsister chromatids (Weinstein 1936) with equal
probability and proceeds without chromatid interfer-
ence (Foss et al. 1993). For the case of interference, we
considered only an extreme situation, which is a com-
plete interference. In such a case, a crossover in a
particular interval between two nonsister chromatids
cannot occur when there is already a crossover in an
interval within 30 cM.

The F2 generation is simulated by crossing the indi-
viduals of the F1 generation. The ratio of the paternal
homozygotes, heterozygotes, and maternal homozy-
gotes among F2 individuals is expected to be 1:2:1. To
mimic the practice in a typical crossing experiment,
we retain the sample of F2 individuals only when the
ratio does not significantly deviate from 1:2:1. Once
the sample of F2 individuals is obtained, the EM algo-
rithm (see, for example, Liu 1998) is used to estimate
the recombination fraction (r) between each pair of
loci.

Since our main purpose is to recover the correct map,
we measure the performance of a method by its success
rate of recovering the true map to a given extent. Most
important is whether a method is capable of completely
recovering the true map. In all our results, we found that
distance defined by Equation 13 performs slightly better
than that defined by Equation 11; therefore, we report
only the results based on the distance defined by
Equation 13. Table 4 shows the results for the five
methods for complete recovery of the map with six

codominant loci. It is clear that the SA algorithm has
almost no chance of recovering the true map, which
agrees with the finding by Stam (1993). However, the
combination of SA with the 2Opt optimization pro-
cedure (Lin and Kernighan 1973) improves it consid-
erably, although it is still a poor performer. The ES-2Opt
is overall more efficient than the SA-2Opt, particularly
with large sample sizes. The performance of the NM
algorithm is good overall except for the case of in-
terference with equal distance between adjacent loci.

Among the five methods compared, the UG algo-
rithm is clearly the most efficient method; its improve-
ment in efficiency over the other four methods is
particularly profound when the sample size is small.
For example, for a sample of 50 individuals, the UG
algorithm has a 76–87% efficiency while the best of the
other four methods achieves only 49% efficiency.

Since overall the NM is the best among the existing
methods, we carried out more extensive comparisons
between the performances of the NM and the UG. In
addition to the complete recovery, it is also informative
to see if a method can recover most of the true map, for
example, recovering 90% of a true map. Table 5 shows
the efficiencies of the NM method and the UG method
in recovering several percentages of the true map in the
cases of 30, 50, and 100 codominant loci. In the case of
no interference, the efficiencies of both methods grow
as sample size increases, but in any sample size the UG
method greatly outperforms the NM method. In partic-
ular, the UG method is weakly sensitive to sample size.

TABLE 2

Distances (above diagonal) and T-values (below diagonal) for the seven loci specified in Table 1

Locus

Locus 1 2 3 4 5 6 7

1 0.34 0.59 0.10 0.22 0.47 0.64
2 �2.9959 0.22 0.22 0.10 0.10 0.34
3 �2.9925 �2.6967 0.47 0.34 0.10 0.10
4 �3.9725 �2.6967 �2.7000 0.10 0.34 0.59
5 �3.3625 �2.5667 �2.5833 �3.0633 0.22 0.47
6 �2.8692 �2.5667 �3.0633 �2.5833 �2.4533 0.22
7 �3.4333 �2.9959 �3.9725 �2.9925 �2.8692 �3.3625

TABLE 3

UG procedure for mapping the seven loci

Linked locus (1) and remaining loci in cycle k

Terminal locus Growing point 1 2 3 4 5 6 7

8 1-4 1 0.16 1.16 1 �0.69 0.78 1.13
9 8-5 �0.36 0.60 1 0.24 0.75
10 9-2 1 0.24 �0.12 0.36
11 10-6 0.0 1 0.12
12 11-3 1 0.0

12-7 1
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For example, in the samples of 100, 200, and 300 F2

individuals, the UG method has, respectively, 74, 86, and
88% accuracies to completely recover the true map of
100 1oci of RD and 82, 98, and 100% accuracies to
completely recover the true map of 100 loci of ED. In
comparison the NM method has only, respectively, 15,
30, and 31% accuracies for recovering the RD map and
22, 70, and 79% for recovering the ED map. On the
other hand, it is also seen from Table 5 that, in com-
parison with the NM method, the UG method does not
obviously tend to perform poorly as the number of
linked loci increases and its mapping efficiency is not
significantly affected by crossover interference.

DISCUSSION

As pointed out in the Introduction, several principles
can be used to reconstruct linkage maps. The SA, SA-
2Opt, and ES-2Opt are methods aimed at minimizing

the sum of adjacent recombination fractions or adjacent
distances in the linkage map. This minimization princi-
ple is correct in theory but often does not work well in
practice due to various types of random errors. Indeed,
even with exactly the same linkage map for all the
individuals subjected to the experiment, the observed
recombination fractions may fluctuate widely from
experiment to experiment due to sampling variation,
ecological condition, sex, genotype, and age (Mester

et al. 2003). Therefore, the estimated linkage map based
on the minimization principle is often poor quality. The
NM method is based on the neighbor joining of Saitou
and Nei (1987). Since its search criteria closely mimic
the minimization principle, the overall accuracy of the
NM method is similar to the best in the class of methods
based on the minimization principle.

The UG algorithm does not rely on the minimization
principle, yet achieves higher accuracy in recovering the
true map. Theorem 1 apparently is the foundation for

Figure 2.—Comparison among three linkage
maps. Maps A and C were estimated using the
UG and NM methods, respectively, on the basis
of a recombination fraction data set of 26 loci
from Liu (1998) and map B was from Liu
(1998), which was based on 1000 bootstrap
samples.

TABLE 4

The efficiencies of different map-making methods in complete recovery of the true map with six codominants

Distance status

ED RD

Crossover status: Independence Interference Independence Interference

Sample size: 50 300 50 300 50 300 50 300

SA 0.0 0.0 0.0 1.0 2.0 0.0 2.0 0.0
SA-2Opt 21.0 33.0 38.0 37.0 25.0 39.0 29.0 37.0
ES-2Opt 36.0 58.0 41.0 63.0 46.0 60.0 49.0 62.0
NM 31.0 79.0 20.0 25.0 39.0 93.0 36.0 89.0
UG 87.0 100.0 84.0 100.0 82.0 100.0 76.0 100.0

RD, random distances (10, 15, 20, 25, and 30 cM) scattered randomly in n� 1 adjacent intervals of n loci on a
model linkage map. ED, equal distance (10 cM) for all adjacent intervals of n loci on a model linkage map.
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its success, which indicates that there is a high proba-
bility that the terminal loci of the true map can be
identified through utilization of distances among mul-
tiple loci simultaneously. Although the theorem is
proven only for strictly additive distance, the fact that
the UG algorithm works very well with distances defined
either as the estimated recombination fractions or as the
corrected estimates indicates that Equation 3 is robust
against modest deviation by the distance from strict
additivity. This pleasing result appears because the loci
critical for determining the status of a particular locus
are those nearby, whose distance to the given locus is
likely more additive than that of those far away. In
addition to its high accuracy, the UG algorithm also has
the advantage of speed, particularly when the number
of loci is large, compared with the NM algorithm. This is
because it takes n � 1 cycles to complete while the NM
algorithm takes n(n � 1)/2 cycles. Therefore, the UG
algorithm should be a useful addition to the tools
for large-scale linkage mapping and for evaluating
the confidence of the estimated map by bootstrap or
jackknife (Liu 1998; Mester et al. 2003).

We thank the High Performance Computer Center of Yunnan
University for computational support and Sara Barton for editorial
assistance. This work was partly supported by National Institutes of
Health grant R01 GM50428 and funds from Yunnan University.
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APPENDIX A

Proof of Theorem 1. For additive distance, Si (i , n) can be written as

Si ¼
Xi�1

k¼1

kdkk11 1
Xn�1

k¼i

ðn � kÞdkk11 ¼
Xi

k¼1

kdkk11 1 ðn � 2iÞdii11 1
Xn�1

k¼i11

ðn � kÞdkk11 ¼ Si11 1 ðn � 2iÞdii11:

For j .n=2, i.e., the largest integer #n/2, we have

Tij � Tij11 ¼ 2dij � Sj � 2ðdij 1 djj11Þ1 Sj11 ¼ �2djj11 � Sj11 � ðn � 2jÞdjj11 1 Sj11 ¼ ½2ð j � 1Þ � n�djj11 $ 0

and for i$n=2

Tij � Ti11j ¼ 2dij � Si � 2di11j 1 Si11 ¼ 2dii11 � Si11 � ðn � 2iÞdii11 1 Si11 ¼ ð2i � nÞdii11 $ 0:

Similarly for i,n=2, Ti�1j � Tij # 0 and for j$n=2, Tij�1 � Tij # 0. It thus follows that when i$n=2 we have
Tij $Tin $Tn�1n and whenj #n=2 we have T12 #T1j #Tij . Finally when i,n=2 and j .n=2, we have Tij $T1j $T1n .

n

Furthermore we have

1
2ðT12 1Tn�1nÞ � T1n ¼ d12 1 dn�1n � ðððn1 2Þ=2Þd12 1nd23 1 � � � 1ndn�2n�1 1 ððn1 2Þ=2Þdn�1nÞ

� 2d1n 1 ðnd12 1nd23 1 � � � 1ndn�2n�1 1ndn�1nÞ
¼ ððn=2Þd12 1

n
2dn�1nÞ � 2d1n ¼ nðd12 1 dn�1nÞ=2 � 2d1n:

APPENDIX B

Proof of Theorem 2. Using the recurrence equation for Si from appendix a, we have

H1i �H1i11 ¼ ðn � 1Þd1i � Si � ðn � 1Þd1i11 1 Si11 ¼ �ðn � 1Þdii11 � ðn � 2iÞdii11 ¼ �ð2n � 2i � 1Þdii11 # 0

for i#n � 1. It is clear that comparison between H1i and H1i11 leads to

H12 #H13 # � � � #H1n�1 #H1n: n
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