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ABSTRACT

Although most high-density linkage maps have been constructed from codominant markers such as
single-nucleotide polymorphisms (SNPs) and microsatellites due to their high linkage information,
dominant markers can be expected to be even more significant as proteomic technique becomes widely
applicable to generate protein polymorphism data from large samples. However, for dominant markers,
two possible linkage phases between a pair of markers complicate the estimation of recombination
fractions between markers and consequently the construction of linkage maps. The low linkage
information of the repulsion phase and high linkage information of coupling phase have led geneticists to
construct two separate but related linkage maps. To circumvent this problem, we proposed a new method
for estimating the recombination fraction between markers, which greatly improves the accuracy of
estimation through distinction between the coupling phase and the repulsion phase of the linked loci.
The results obtained from both real and simulated F2 dominant marker data indicate that the
recombination fractions estimated by the new method contain a large amount of linkage information for
constructing a complete linkage map. In addition, the new method is also applicable to data with mixed
types of markers (dominant and codominant) with unknown linkage phase.

MOST high-density linkage maps have been con-
structed from codominant markers such as single-

nucleotide polymorphisms (SNPs) and microsatellites
because of their high linkage information, but linkage
maps of dominant markers will become more and more
important because such markers are often related to
biological functions and are increasingly available as
proteomic techniques are becoming mature. Proteo-
mic markers include position-shift locus (PSL), pres-
ence/absence sport (PAS), and protein quantitative
locus (PQL) (Thiellement et al. 1999; Zivy and de

Vienne 2000; Consoli et al. 2002), of which PAS and
PQL are dominant markers (Thiellement et al. 1999;
Zivy and de Vienne 2000; Consoli et al. 2002). An
example of a linkage map constructed from mostly
dominant markers is the Escherichia coli bacteriophage
T7 protein linkage map (Bartel et al. 1996). High-
density linkage maps in the future will be more likely
constructed from both dominant and codominant
markers since such maps can provide fine genetic
locations of functional markers through high-density
codominant markers flanking them. Therefore, accu-
rate estimates of recombination fractions between domi-

nant markers and between dominant and codominant
markers are important.

Due to dominance, the genotype of an individual at a
dominant marker is often ambiguous, which increases
the complexity of analysis. An important issue in the
estimation of the recombination fraction is how to ef-
ficiently deal with different linkage phases between a
pair of dominant loci (Mester et al. 2003a). Two dif-
ferent linkage phases for a double heterozygote are
well recognized. One is known as the repulsion phase,
which corresponds to the situation in which these two
dominant alleles reside on different chromosomes;
otherwise, it is known as the coupling phase. In a two-
point analysis that considers two markers at a time, the
repulsion phase provides much less information about
linkage than the coupling phase (Allard 1956; Knapp

et al. 1995; Liu 1998; Mester et al. 2003a). This is es-
pecially true for double heterozygotes from the F2

population (Liu 1998). In reality, about half of the
markers are in the coupling phase and the remaining
markers are in the other coupling phase. The phase
between two couplings is repulsion (Liu 1998; Mester

et al. 2003a). This leads in practice to the construction of
two separate partner linkage maps: one is called the
paternal map on which markers are derived from the
paternal parent and the other is called the maternal
map consisting of the maternal markers (Knapp et al.
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1995; Peng et al. 2000; Mester et al. 2003a). To date,
there is no effective way to integrate the partner maps
into a single complete map. Mester et al. (2003) at-
tempted to use pairs of codominant and dominant
markers to accomplish this task because such pairs of
markers in the repulsion phase have higher linkage
information than pairs of dominant markers in the
coupling phase. However, this strategy is extremely
demanding because it requires that every dominant
marker be paired with a codominant marker.

The two-point analysis implemented by the expecta-
tion-maximization (EM) algorithm (Dempster et al.
1977; Lander and Green 1987; Ott 1991) is a powerful
approach for estimating recombination fractions be-
tween codominant loci and between dominant loci in
the coupling phase, but it has a poor resolution for
dominant loci in the repulsion phase (see Liu 1998).
This is because the two-point analysis cannot distinguish
the coupling phase from the repulsion phase of dom-
inant markers, which have rather different statistical
properties. In addition to the need for treating coupling
and repulsion phases separately, examining three loci at
a time will lead to a better utilization of available linkage
information. The problem is that not only the number
of combinations of the three loci is large when the total
number of loci is large, but also the complexity of the
analysis increases due to the need to distinguish several
types of double or triple heterozygotes. To circumvent
these problems, we propose an alternative approach in
this article. The new method considers three loci at
a time. It first classifies phenotypes into four pairs of
gamete genotypes, followed by estimating their frequen-
cies from the sample that led to the identification of the
linkage phase of the loci, then estimates recombination
fractions between loci according to their linkage phase,
and finally reduces the three-point estimates of the
recombination fractions to two-point estimates. A key to
this strategy is a fast method for estimating the frequen-
cies of different gamete types because of the need to
deal with a large number of loci combinations. We are
able to develop very efficient estimators of these fre-
quencies by taking advantage of the simplicity of their
expectations. The estimates of recombination fractions
obtained by this new method make it possible to inte-
grate two separate partner linkage maps based on the
EM estimates of recombination fractions into a single
complete linkage map.

METHODS

Estimating the frequencies of three-locus gametes:
Since the novel method to be described for estimating
recombination fractions makes use of the frequencies of
gametes defined by alleles from three loci, we start by
presenting estimators of these frequencies. Two cases
need to be considered separately. The first corresponds

to the situation in which all three loci are dominant and
thus is referred to as ‘‘dominant loci.’’ The second is that
only one or two loci out of three are dominant and is
referred to as ‘‘mixed loci.’’

Dominant loci: Consider three dominant loci each
having two alleles. Let A and a be the two alleles for the
first locus, B and b be those for the second, and C and
c be those for the third. Uppercase letters denote domi-
nant alleles and lowercase letters recessive alleles. A
meiosis from a triple-heterozygote individual of the F1

population can produces eight different types of three-
locus gamete: ABC, ABc, Abc, AbC, aBC, abC, aBc, and abc,
where ABC and abc, Abc and aBC, abC and ABc, and AbC
and aBc are, respectively, sister gametes. These sister
gametes are expected to have equal frequency under
the assumption of no segregation distortion during
meiosis. In practice, a chi-square test can be used to re-
move loci that exhibit significant segregation distortion.
These gametes can be grouped into four pairs of non-
sister gametes. Define an F2 population:

q1 ¼ pðABCÞ ¼ pðabcÞ;
q2 ¼ pðAbcÞ ¼ pðaBCÞ;
q3 ¼ pðABcÞ ¼ pðabCÞ;
q4 ¼ pðAbCÞ ¼ pðaBcÞ:

It follows that 2q1 1 2q2 1 2q3 1 2q4 ¼ 1. The individuals
of the F2 population can be classified into four catego-
ries. Category i (i ¼ 0, . . ., 3) consists of individuals
with exactly i loci possessing a dominant allele. To esti-
mate gamete frequencies, it is necessary to consider the
frequency of each category. Let aabbC represent the
phenotype in which only locus c exhibits a dominant
phenotype. Therefore aabbC represent the group of in-
dividuals from category 1 whose locus c has a dominant
allele(s). It is obvious that there are three genotypes in
category 1 and aabbC can be further dissected into

aabbC /

aabbCC / ðabCÞ2 : q2
3

aabbCc / ðabCÞðabcÞ : q3q1

aabbcC / ðabcÞðabCÞ : q1q3:

8><
>:

Phenotypes aaB cc and A bbcc are also dissected in a
similar fashion.

There are also three phenotypes in category 2, each of
which can be dissected into five pairs of sister gametes.
For instance, the phenotype A B cc can be dissected into

ðABcÞðABcÞ : q2
3

ðABcÞðabcÞ : 2q3q1

ðABcÞðAbcÞ : 2q3q2

ðABcÞðaBcÞ : 2q3q4

ðAbcÞðaBcÞ : 2q2q4:

Note that the phenotype for category 3 is not very
informative since the single phenotype corresponds to

924 Y.-D. Tan and Y.-X. Fu



too many genotypes. Therefore frequencies for cate-
gory 3 are not used.

Let Q 1, Q 2, Q 3, Q 4, Q 5, Q 6, and Q 7 be the expected
frequencies of phenotypes aabbcc, aabbC , aaB cc, A bbcc,
A B cc, A bbC , and aaB C in the F2 population, re-
spectively. Then

Q 1 ¼ q2
1

Q 2 ¼ q2
3 1 2q1q3

Q 3 ¼ q2
4 1 2q1q4

Q 4 ¼ q2
2 1 2q1q2 ð1Þ

and

Q 5 ¼ q2
3 1 2q1q3 1 2ðq3q2 1 q3q4 1 q2q4Þ

Q 6 ¼ q2
4 1 2q1q4 1 2ðq3q2 1 q3q4 1 q2q4Þ

Q 7 ¼ q2
2 1 2q1q2 1 2ðq3q2 1 q3q4 1 q2q4Þ: ð2Þ

Letting Q 0 ¼ 2ðq2q3 1 q2q4 1 q3q4Þ, Equation 2 may be
rewritten as

Q 5 ¼ Q 2 1 Q 0

Q 6 ¼ Q 3 1 Q 0

Q 7 ¼ Q 4 1 Q 0: ð3Þ

Moment estimates of q1; . . . ; q4 can be obtained from
the above sets of equations by replacing Q i by their
moment estimates, which are simply their observed
frequencies in the sample. Theoretically Equation 1 is
sufficient for deriving solutions for q’s. However, Equa-
tion 3 can be used to further minimize the stochastic
effect in the observed frequencies. Specifically, Q 2, Q 3,
and Q 4 can be estimated as

Q̂o
2 ¼ Q̂5 � Q̂0 ¼ 0:25� ðQ̂1 1 Q̂6 1 Q̂7Þ

Q̂o
3 ¼ Q̂6 � Q̂0 ¼ 0:25� ðQ̂1 1 Q̂5 1 Q̂7Þ

Q̂o
4 ¼ Q̂7 � Q̂0 ¼ 0:25� ðQ̂1 1 Q̂5 1 Q̂6Þ; ð4Þ

where Q 0 ¼ Q 5 1 Q 6 1 Q 7 1 Q 1 � 0:25 (see appendix

a). It follows that Q 2, Q 3, and Q 4 can alternatively be
estimated from the observed frequencies of Q 1, Q 5, Q 6,
and Q 7. We can combine the two sets of estimates of Q 2,
Q 3, and Q 4 to obtain a more stable set of estimates as

Q̂ *
2 ¼

1

a2 1 b2
ða2Q̂2 1 b2Q̂o

2Þ

Q̂ *
3 ¼

1

a3 1 b3
ða3Q̂3 1 b3Q̂o

3Þ

Q̂ *
4 ¼

1

a4 1 b4
ða4Q̂4 1 b4Q̂o

4Þ; ð5Þ

where ak and bk are weights of Q̂ k and Q̂o
k , respectively,

where k ¼ 2, 3, 4. Q̂ k is the estimate of Q k . Our
simulation study showed that ak ¼ bk usually gives the
best result for the estimation of qk . When the sample is
small, it is possible that Q̂o

k # 0 or Q̂ k ¼ 0. In such a case,

one can set ak ¼ 1 and bk ¼ 0 for Q̂o
k # 0, or ak ¼ 0 and

bk ¼ 1 for Q̂o
k $ 0 and Q̂ k ¼ 0.

Since Q 2 ¼ q2
3 1 2q1q3 1 q2

1 � q2
1 ¼ ðq3 1 q1Þ2 � q2

1 ,
therefore q3 can be expressed as

q3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 2 1 Q 1

p
�

ffiffiffiffiffiffiffi
Q 1

p
: ð6aÞ

Similarly we have

q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 4 1 Q 1

p
�

ffiffiffiffiffiffiffi
Q 1

p
; ð6bÞ

q4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 3 1 Q 1

p
�

ffiffiffiffiffiffiffi
Q 1

p
: ð6cÞ

Q 2 and Q 1are estimated by Q̂ *
2 and Q̂1, so q3 is estimated

by

q̂3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂2 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q
: ð7aÞ

Similarly

q̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂4 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q
; ð7bÞ

q̂4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂*

3 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q
: ð7cÞ

q1is estimated by

q̂1 ¼
ffiffiffiffiffiffi
Q̂1

q
: ð7dÞ

Mixed loci: Two configurations in the case of the
mixed loci need to be considered. The first is two
codominant loci and one dominant locus (2C1D), and
the second is one codominant locus and two dominant
loci (1C2D) (see Figure 1). For a codominant locus, ‘‘0’’
and ‘‘1’’ represent two parental types of homozygotes
and ‘‘2’’ represent heterozygote. While for the domi-
nant locus, ‘‘A’’ and ‘‘a’’ represent a dominant pheno-
type and a recessive phenotype, respectively. Without
loss of generality, we assume in the following discussion
the order of loci in the case of 2C1D is DCC. The 12
phenotypes are informative for linkage analysis, which
are a00, a01, a02, a10, a11, a12, a20, a21, A00, A01, A10,
and A11, while phenotypes A20, A21, and A02 and A12,
a22, and A22 are much less informative because they
are double (or potentially) and triple (or potentially)
heterozygotes. In the F2 population, similar to pheno-
type aabbcc in dominant loci, phenotypes a00, a01, a10,
and a11 are homozygous and have the expected fre-
quencies Q 1 ¼ q2

1 , Q 2 ¼ q2
2 , Q 3 ¼ q2

3 , and Q 4 ¼ q2
4 ,

respectively, and A00, A01, A10, and A11 are similar
to A bbcc in dominant loci and have the expected fre-
quencies Q 21 ¼ q2

2 1 2q2q1, Q 43 ¼ q2
4 1 2q4q3, Q 34 ¼

q2
3 1 2q3q4, and Q 12 ¼ q2

1 1 2q2q1, respectively. The
frequencies of a02, a12, a20, and aa21 are expected
to have P13 ¼ 2q1q3, P24 ¼ 2q2q4, P14 ¼ 2q1q4, and P23 ¼
2q2q3, respectively. Thus, for any nonsister gamete type,
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there are three ways to estimate these gamete frequen-
cies. For example, q1 can be estimated by the following
three equations:

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 12 1 Q 2

p
�

ffiffiffiffiffiffiffi
Q 2

p
; ð8aÞ

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 3 1 P13 1 Q 1

p
�

ffiffiffiffiffiffiffi
Q 3

p
; ð8bÞ

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 4 1 P14 1 Q 1

p
�

ffiffiffiffiffiffiffi
Q 4

p
: ð8cÞ

A simple single estimate can be obtained by taking the
average of the three. The approach is also used for other
gametes, resulting in the estimates

q̂1 ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂12 1 Q̂2

q
�

ffiffiffiffiffiffi
Q̂2

q� �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂3 1 P̂13 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂3

q� ��

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂4 1 P̂14 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂4

q� ��
; ð9aÞ

q̂2 ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂21 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q� �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂3 1 P̂23 1 Q̂2

q
�

ffiffiffiffiffiffi
Q̂3

q� ��

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂4 1 P̂24 1 Q̂2

q
�

ffiffiffiffiffiffi
Q̂4

q� ��
; ð9bÞ

q̂3 ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂34 1 Q̂4

q
�

ffiffiffiffiffiffi
Q̂4

q� �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂3 1 P̂13 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q� ��

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂3 1 P̂23 1 Q̂2

q
�

ffiffiffiffiffiffi
Q̂2

q� ��
; ð9cÞ

q̂4 ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂43 1 Q̂3

q
�

ffiffiffiffiffiffi
Q̂3

q� �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂2 1 P̂24 1 Q̂4

q
�

ffiffiffiffiffiffi
Q̂2

q� ��

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂4 1 P̂14 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q� ��
; ð9dÞ

where Q̂1, Q̂3, Q̂4, Q̂2, Q̂21, Q̂43, Q̂34, Q̂12, P̂13, P̂24, P̂14,
and P̂23 are estimates of Q 1, Q 3, Q 4, Q 2, Q 21, Q 43, Q 34,
Q 12, P13, P24, P14, and P23, respectively.

Similarly, we can obtain estimates of the frequencies
of these four types of nonsister gametes in 1C2D from

q̂2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂21 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q� �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂24 1 Q̂4

q
�

ffiffiffiffiffiffi
Q̂4

q� �� �
;

ð10aÞ

q̂3 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂31 1 Q̂1

q
�

ffiffiffiffiffiffi
Q̂1

q� �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂34 1 Q̂4

q
�

ffiffiffiffiffiffi
Q̂4

q� �� �
;

ð10bÞ

q̂1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂1 1 P̂14 1 Q̂4

q
�

ffiffiffiffiffiffi
Q̂4

q� �
1

ffiffiffiffiffiffi
Q̂1

q� �
; ð10cÞ

q̂4 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂1 1 P̂14 1 Q̂4

q
�

ffiffiffiffiffiffi
Q̂1

q� �
1

ffiffiffiffiffiffi
Q̂4

q� �
; ð10dÞ

where Q̂1, Q̂4 Q̂21, Q̂24, Q̂31, Q̂34, and P̂14 are the
estimated frequencies of phenotypes a0c, a1c, A0c, a1C ,
a0C , A1c, and a2c, respectively.

Three-point estimates of recombination fractions be-
tween loci: Recombination fractions between loci can
be estimated from q’s. Since q’s are estimated separately,
their sum does not always satisfy the equation q ¼ q1 1

q2 1 q3 1 q4 ¼ 0:5. Therefore, before estimating the re-
combination fraction, we obtain normalized estimates
of q’s as

p1 ¼
q̂1

2q̂
; p3 ¼

q̂3

2q̂

p2 ¼
q̂2

2q̂
; p4 ¼

q̂4

2q̂
:

It is obvious that three loci are viewed to be indepen-
dent if the null hypothesis p1 ¼ p2 ¼ p3 ¼ p4 holds at
the significance level of 0.05, two loci are believed to
be linked with each other, and the rest is independent
if two of four types of nonsister gametes have equal es-
timated frequencies at the 0.05 significance level.

For linked loci, the frequencies of the four pairs of
nonsister gametes can be used to distinguish the cou-
pling phase from the repulsion phase between loci and
consequently lead to proper estimates of the recombi-
nation fraction between loci according to whether they
are in the coupling phase or in the repulsion phase. For
example, suppose the order of the three loci is a–b–c.
Then if p4 is the smallest and p1 is the largest, each pair
of the three loci is in the coupling phase, and if p4 is the
largest and p1 is the smallest, then loci a and c are in the
coupling phase but loci a and b and loci b and c are in the
repulsion phase. On the other hand, if p2 is the largest
and p3 is the smallest, then loci a and b are in coupling
phase but loci a and c and loci b and c are in repulsion
phase. Similarly if p2 is the smallest and p3 is the largest,
then loci b and c are in coupling phase but loci a and b
and loci a and c are in repulsion.

In the coupling phase p4 is the frequency of double
crossover in the F2 progeny. Thus, the recombina-
tion fractions between a and b, between b and c, and be-
tween a and c can be estimated by

rab ¼ 2ðp2 1 p4Þ
rbc ¼ 2ðp3 1 p4Þ
rac ¼ 2ðp2 1 p3Þ: ð11Þ

Estimates of the recombination fractions between loci
in the other orders in the coupling phase are also ob-
tained in a similar manner.

Figure 1.—Three marker regions on a chromosome. C, co-
dominant marker; D, dominant marker.
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In the repulsion phase, the order (a–b–c) leads to p1

due to double crossover, and thus the recombination
fractions between a and b, between b and c, and be-
tween a and c are estimated by

rab ¼ 2ðp3 1 p1Þ
rbc ¼ 2ðp2 1 p1Þ
rac ¼ 2ðp2 1 p3Þ: ð12Þ

The recombination fractions between three loci in the
other orders in the repulsion phase can be estimated in
a similar fashion.

Reduction of the three-point estimates of recombi-
nation fractions to the two-point estimates: If n loci
on a chromosome are genotyped in the mapping
study, there are ð n

3 Þ ¼ nðn � 1Þðn � 2Þ=6 combinations
of three loci, each of which results in three estimates of
the recombination fraction. Therefore a total of
1
2nðn � 1Þðn � 2Þ recombination fractions are being es-
timated. When n is large, it will be difficult to compare
all these combinations for building a linkage map of
n loci even on a modern computer. Moreover, the
1
2nðn � 1Þðn � 2Þ recombination fractions contain cou-
pling and repulsion linkage information. To avoid these
complex comparisons, it is necessary to reduce the
three-point estimates to two-point estimates. Although
loci i and j would be configured with n � 2 other loci to
form n � 2 three-point combinations, the linkage phase
between loci i and j has already been fixed regardless of
the other locus. Estimates of the recombination fraction
between loci i and j may vary slightly with the other loci
due to their respective different double-exchange fre-
quencies and sampling error; hence, it needs to be
adjusted with n � 2 other loci. For convenience, let the
estimate of recombination fraction between loci i and j
in a three-point combination (i, j, k) be referred to as a
three-point estimate and denoted by rijk, where k is
called a reference locus and k 6¼ i 6¼ j . Thus, for n loci
on a chromosome or a fragment, recombination frac-
tions between loci i and j have n � 2 three-point
estimates. The order of loci i, j, and k in rijk has been
determined previously; that is, rijk contains the order
information of these three loci according to Equations
11 and 12. On the other hand, there are n � 2 estimates
of the recombination fraction between loci i and j.
These n � 2 estimates fluctuate with sampling errors
and different double-exchange values, which depends
upon the distances of locus i or/and locus j from locus k.
Three cases for the variation of double-exchange val-
ues with respect to the estimate of the recombination
fraction between loci i and j are considered: (1) loci i
and j are adjacent loci, and all reference loci are out of
interval i–j; (2) loci i and j are two terminal loci on a
chromosome or a fragment, and all reference loci are
within interval i–j; and (3) loci i and j are nonadjacent
loci and the reference loci are either within or out of
interval i–j. In the first case, the double exchanges

dealing with all reference loci are detected and mea-
sured but different from one reference locus to another
reference locus. For the second case, the double
exchanges dealing with reference loci do not contribute
to the recombination fraction between loci i and j.
There is only one type in this case: loci i and j are
two terminal loci but the n � 2 estimates are also differ-
ent with different reference loci because the double-
exchange frequency is different with the reference locus;
for example, a reference locus near locus i or j has less
double-exchange frequency than a reference locus a
distance from loci i and j. In other words, the former
loses smaller double exchanges than the latter. There-
fore, the former has a larger estimate value than the
latter. The third case is in between the first and second
cases, which is seen in the next section. Thus, the re-
combination fraction between loci i and j is estimated
by an average estimate over n � 2 reference loci:

uij ¼
1

n � 2

Xn�2

k¼1

rijk : ð13Þ

It is obvious that uij contains not only information of the
linkage phase but also the average double-exchange
frequency over all reference loci and, in addition, bal-
ances sampling errors. Therefore, uij is closer to its true
value than that obtained by using an EM algorithm.

AN EXAMPLE

As an example to illustrate the construction of linkage
maps by MAPMAKER/EXP (version 3.0b), Lander et al.
(1987) provided a RFLP data set of 333 F2 mice. Since
RFLP markers are codominant, A, H, and B are used in
the data set for each locus to denote homozygotes of
type A, heterozygotes (type H), and homozygotes of type
B, respectively. To evaluate our new method, we con-
verted these codominant marker data into dominant
marker data by changing A to H and applied our new
method to the dominant marker data set of the first six
markers in the unknown linkage phase. Table 1 provides
the estimates of the four pairs of nonsister gametes in
the three-point combinations in the sample of 333 F2

individuals. It is clear that the frequencies of the four
pairs of nonsister gametes containing both loci 4 and 6
all fit the ratios of 1:1:1:1 very well, which indicates that
loci 4 and 6 are independent of each other and un-
linked to the other four loci. Thus, these two loci are
excluded. By using Equations 11 and 12, we obtained
estimates of the recombination fractions in three-point
combinations (123), (125), (135), and (235). The pro-
cedure is as follows: the first step is to determine the
linkage order of three loci in a combination; for example,
for combination (123), p1 ¼ pðR1R 2R 3Þ ¼ 0.418598 .

p2 ¼ pðR1D2R 3Þ ¼ 0.064757 . p3 ¼ pðD1R 2R 3Þ ¼
0.011861 . p4 ¼ pðR1R2D3Þ ¼ 0.004784 indicates that
ðR1R2R3Þis the parental type and ðR1R2D3Þis the type
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due to double exchange. Those remaining are recombi-
nants where Ri and Di , respectively, represent recessive
and dominant alleles in locus i (i ¼ 1, 2, 3) in a
combination. These three loci have the linkage order
of 1–3–2. The second step is to determine the linkage
phase: since gamete ðR1R2R3Þ is recessive at all three loci
and has the largest frequency among these four types of
nonsister gametes, we can determine that loci 1, 2, and 3
are in the coupling phase. The third step is to estimate
recombination fractions in combination (123) by applying
Equation 11 for the case of the coupling phase to the data
in Table 1; that is,

r132 ¼ 2 3 ð0:011861 1 0:004784Þ ¼ 0:0333;

r231 ¼ 2 3 ð0:064757 1 0:004784Þ ¼ 0:1391;

r123 ¼ 2 3 ð0:011861 1 0:064757Þ ¼ 0:1532:

Similarly, we also obtained estimates of the recombina-
tion fractions in combinations (125), (135), and (235)
(see Table 2).

Finally, the three-point estimates of the recombina-
tion fractions were incorporated into two-point esti-
mates by applying Equation 13 to the data in Table 2:

u12 ¼ ðr123 1 r125Þ=2 ¼ ð0:1532 1 0:1274Þ=2 ¼ 0:1403;

u13 ¼ ðr132 1 r135Þ=2 ¼ ð0:0333 1 0:0293Þ=2 ¼ 0:0313;

u15 ¼ ðr152 1 r153Þ=2 ¼ ð0:2357 1 0:2452Þ=2 ¼ 0:2405;

u23 ¼ ðr231 1 r235Þ=2 ¼ ð0:1391 1 0:1254Þ=2 ¼ 0:1323;

u25 ¼ ðr251 1 r253Þ=2 ¼ ð0:1328 1 0:2005Þ=2 ¼ 0:1667;

u35 ¼ ðr351 1 r352Þ=2 ¼ ð0:2452 1 0:1606Þ=2 ¼ 0:2029:

On the basis of the two-point estimates of recombina-
tion fractions, the best linkage map for these four loci
under study was found to be 1–3–2–5, using a novel
approach called the unidirectional growth method
(Tan and Fu 2006), where loci 1, 2, 3, and 5 correspond
to markers T175, T93, C35, and C66, respectively, in the
original data set. The same linkage map (see Figure 2A)
was obtained when only some of the markers were con-
verted to dominant markers and is also the same link-
age map that was obtained by MAPMAKER (at LOD ¼
3.0) in the original data. However, when all markers are
converted to the dominant type, MAPMAKER yielded a
linkage map 1–3–2–5–6–4 (at LOD¼ 3.0) where locus 6
corresponding to marker T209 was linked to locus 5

TABLE 1

Estimation of frequencies of four types of nonsister gametes

Combination: Frequencies of four gametes

Position in combination
pðR1R2R3Þ
¼ p1

pðD1R2R3Þ
¼ p2

pðR1D2R3Þ
¼ p4

pðR1R2D3Þ
¼ p3 Expected ratio1 2 3

1 2 3 0.418598 0.011861 0.064757 0.004784
1 2 4 0.196761 0.016656 0.051207 0.235376
1 2 5 0.3761 0.057600 0.006113 0.060262
1 2 6 0.191609 0.013230 0.031609 0.263553
1 3 4 0.233690 0.000000 0.012201 0.254109
1 3 5 0.370070 0.007329 0.007329 0.115272
1 3 6 0.193669 0.000000 0.010476 0.295854
1 4 5 0.191721 0.000000 0.228865 0.079413
1 4 6 0.147948 0.108306 0.095798 0.147948 1:1:1:1 (p ¼ 0.3817)
1 5 6 0.175535 0.007168 0.051080 0.266218
2 3 4 0.194303 0.041324 0.021653 0.242720
2 3 5 0.416944 0.002734 0.021395 0.058926
2 3 6 0.202325 0.017127 0.022547 0.258002
2 4 5 0.191569 0.000000 0.262388 0.046043
2 4 6 0.130069 0.136493 0.116719 0.116719 1:1:1:1 (p ¼ 0.3820)
2 5 6 0.220542 0.000000 0.024577 0.254881
3 4 5 0.188681 0.006188 0.236025 0.069106
3 4 6 0.135443 0.117948 0.105580 0.141029 1:1:1:1 (p ¼ 0.3819)
3 5 6 0.191077 0.018237 0.035008 0.255678
4 5 6 0.140382 0.102766 0.154085 0.102766 1:1:1:1 (p ¼ 0.3817)

R, recessive; D, dominant.

TABLE 2

Estimation of recombination fractions by using the
new method

Three-point
combinations

Recombination fractions
between loci

a b c a–b b–c a–c

1 2 3 0.1532 0.1391 0.0333
1 2 5 0.1274 0.1328 0.2357
1 3 5 0.0293 0.2452 0.2452
2 3 5 0.1254 0.1606 0.2005
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(C66) at map distance 30.3 cM and locus 4 correspond-
ing to T24 was linked to locus T209 at map distance 14.9
cM (see Figure 2B). These observations indicate that the
new method leads to a better estimate of recombination
than the maximum-likelihood method between domi-
nant markers in the case of unknown phase in F2

progeny.

SIMULATION STUDY

Since real data are not the best for fully evaluating a
method because of unknown recombination fractions
between loci, we used a computer simulation to gener-
ate data so that estimates of the recombination fraction
can be compared to their true values. In addition to the
new method, we also implemented the EM algorithm
(see Liu 1998 for a detailed description of the process).
To avoid potential unknown bias of a map-making
method, we implemented the exhaustive search method
to make maps (Liu 1998). Since the exhaustive search is
extremely time consuming (Mester et al. 2003b), we
examined only two short linkage maps, composed of 6
and 11 dominant loci, respectively. Five map distances
10, 15, 20, 25, and 30 cM (1 cM ¼ 1%) were randomly
assigned to each adjacent interval. This setting makes it
more difficult to estimate recombination fractions than
in the case of a single fixed distance for all adjacent loci.

We took two cases of linkage phases into account in
the simulation: (1) coupling phase (CP), 1 allelic sta-
tuses at all loci are assigned to a parental (P1) chromo-
some and all 0 allelic statuses to the other parental (P2)
chromosome; and (2) unknown phase (UP), 1 or 0
allelic status at each locus is at random allocated to each
of two parental chromosomes with equal probability.
We used the point process crossover model (Foss et al.
1993; McPeek and Speed 1995) to generate recombi-
nants. In each of F1 meioses, recombination events oc-
cur at random between two adjacent loci. We considered
both crossover-independent and complete crossover in-
terference (but in separate simulations). For the com-
plete crossover interference, we assumed that crossover

cannot occur within an interval and between two non-
sister chromatids when there is already a crossover
within its adjacent interval and between the same two
nonsister chromatids in the case of which the sum of
distances over two adjacent intervals is #40 cM.

The expected ratio of alleles 1 and 0 for each locus is
3:1 among F2 individuals. The simulations were carried
out with sample sizes N ¼ 100, 200, and 300 F2 in-
dividuals, and loci that exhibited significant segregation
distortion as revealed by chi-square test were removed.
For each parameter set, 500 replicates were generated.
Two criteria were used to evaluate these methods. One is
the bias of the estimates of recombination fractions
between two adjacent loci, which is defined as the
average squared distance of the estimate to its true
value, and the other is the accuracy of a method in
recovering the true linkage map of given loci.

Table 3 shows the biases of estimates in the case of UP
obtained by the two methods. In all the cases, the new
method has a much smaller bias than the EM algorithm,
which is a good indication that the new method is a
better approach. However, the ultimate measure of
usefulness of a method for estimating recombination
fractions is to see if it leads to more accurate linkage
map estimation. Table 4 summarizes the results of
linkage map estimation by applying the exhaustive
search method to the estimated recombination fraction
data obtained by using both the EM algorithm and the
new methods. It can be seen from Table 4 that both the
EM and the new estimators have a very high accuracy in
the case of CP even in a relatively small sample of 100 F2

individuals. However, the new estimator has a much
higher accuracy than the EM estimator in the case of
UP, as expected. Furthermore, the new method im-
proves its accuracy rapidly with sample size. It has an
accuracy of 50.5% with a sample size of 100 F2 indi-
viduals and 85.1% with a sample size of 300 F2 indi-
viduals. The accuracy of both estimators decreases as the

Figure 2.—Two linkage maps of loci built by the unidirec-
tional growth method (Tan and Fu 2006) on the basis of
the new estimates of recombination fractions (A) and by
MAPMARKER on the basis of the EM estimates (B), where
the data of the RFLP markers provided in MAPMAKER/
EXP (version 3.0, Lander et al. 1987) were converted into
dominant markers by replacing B with H.

TABLE 3

Variances of estimates of recombination fractions between
adjacent dominant loci in the unknown phase (UP) deviated
from their respective true values in 500 simulated samples

Sample sizes

Methods Adjacent loci 100 200 300

EM algorithm 1–2 0.015 0.011 0.010
2–3 0.016 0.013 0.012
3–4 0.019 0.015 0.013
4–5 0.020 0.016 0.014
5–6 0.021 0.015 0.014

New method 1–2 0.009 0.009 0.008
2–3 0.009 0.007 0.007
3–4 0.008 0.009 0.008
4–5 0.010 0.009 0.009
5–6 0.010 0.010 0.009
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number of dominant loci increases. Table 5 shows the
results of accuracy under the assumption of crossover
interference. As expected, both methods have poorer
performance than under the assumption of crossover
interference. Although complete crossover interfer-
ence in general likely occurs only between two very
small adjacent intervals. The results in Table 5 suggest
that crossover interference has in general a negative
impact on the estimate of the recombination fraction.

DISCUSSION

We showed in this article, using both real and
simulated data, that the widely used EM algorithm for
estimating the recombination fraction between a pair of
loci performs poorly for dominant markers because it
fails to distinguish the coupling phase from the re-
pulsion phase. We also found (results not shown) that
similar to those shown in Tables 4 and 5 MAPMAKER/
EXP performed poorly (,10% accuracy) for dominant
markers in the unknown linkage phase, regardless
whether a two-point or a three-point approach was used
to estimate recombination fractions. The excellent
performance of our new method may be due to several
factors: (a) improved accuracy of the estimates of the
gamete frequencies, (b) three-point analysis in which
coupling and repulsion phases of loci are effectively
distinguished, and (c) reduction of three-point esti-

mates to two-point estimates resulting in more stable
estimates of the recombination fractions.

Although the new method appears to have a short-
coming in that good accuracy of recovering true linkage
maps using its estimates requires a reasonably large
sample size, it does provide a promising approach that
can lead to a better estimation of linkage maps from
either dominant loci or mixed loci when the sample size
is �300 F2 individuals. One likely application of the
new method is to supplement the EM method. More
specifically, one can apply both methods to the same
data set and obtain two sets of estimates of recombina-
tion fractions. The EM estimates are used to build two
partner linkage maps in which all linked loci are in the
coupling phase. The new method’s estimates can be
used to integrate these two partner linkage maps into a
single linkage map.

This study also indicates that examination of three
loci at a time does provide additional information for
estimating both recombination fractions and linkage
maps. Since there are on the order of n3 combinations of
three loci, any approach that analyzes three loci at a time
will be demanding computationally, particularly when
the number of loci is large. It will be practical only when
the speed of analyzing each combination of the three
loci is sufficiently fast. The new method is practical even
for a large number of loci since the amount of
computation for each triplet of loci is minimal.

TABLE 4

Efficiencies of two recombination fraction estimators in recovering the true linkage orders of 6 and 11 linked
dominant loci in 500 samples generated by simulations on the basis of crossover independence

Linkage map of 6 loci: Linkage map of 11 loci:

Sample sizes Sample sizes

Estimators Linkage Phases 100 200 300 100 200 300

EM algorithm CP 92.3 97.8 100.0 86.1 98.4 100.0
UP 15.7 22.9 23.4 5.7 5.7 6.3

New method CP 91.4 98.1 100.0 85.9 96.9 100.0
UP 45.6 61.4 75.7 19.86 34.1 47.6

CP, coupling phase; UP, unknown phase.

TABLE 5

Efficiencies of two recombination fraction estimators in recovering the true linkage orders of 6 and 11 linked
dominant loci in 500 samples generated by simulations on the basis of crossover interference

Linkage map of 6 loci: Linkage map of 11 loci:

Sample sizes Sample sizes

Estimators Linkage phases 100 200 300 100 200 300

EM algorithm CP 86.3 95.9 97.3 75.4 91.3 97.2
UP 17.4 23.5 27.5 4.5 5.8 5.7

New method CP 93.2 96.9 98.4 82.1 95.7 97.8
UP 39.2 50.3 58.2 11.3 22.8 28.6

CP, coupling phase; UP, unknown phase.
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APPENDIX A

Since q1 1 q2 1 q3 1 q4 ¼ 0:5, an alternative expres-
sion of Q 5 is

Q 5 ¼ q2
3 1 2q1q3 1 2ðq3q2 1 q3q4 1 q2q4Þ

¼ q2
3 1 2q3ðq1 1 q2 1 q4Þ1 2q2q4

¼ q2
3 1 2q3ð0:5� q3Þ1 2q2q4

¼ q3 1 2q2q4 � q2
3 : ðA1Þ

Similarly, we have

Q 6 ¼ q4 1 2q2q3 � q2
4 ; ðA2Þ

Q 7 ¼ q2 1 2q3q4 � q2
2 : ðA3Þ

It follows that

Q 5 1 Q 6 1 Q 7 ¼ q2 1 q3 1 q4 1 2ðq2q3 1 q2q4 1 q3q4Þ � q2
2 � q2

3 � q2
4

¼ ð0:5� q1Þ1 2ðq2q3 1 q2q4 1 q3q4Þ � q2
2 � q2

3 � q2
4

¼ ð0:5� q1Þ1 Q0 � q2
2 � q2

3 � q2
4 ðA4Þ

and

ð0:5� q1Þ2 ¼ ðq2 1 q3 1 q4Þ2

¼ q2
2 1 q2

3 1 q2
4 1 2ðq2q3 1 q2q4 1 q3q4Þ

¼ q2
2 1 q2

3 1 q2
4 1 Q0: ðA5Þ

Equations A4 and A5 lead to the solution for Q0 as

Q0 ¼ ½Q 5 1 Q 6 1 Q 7 1 ð0:5� q1Þ2 � ð0:5� q1Þ�
¼ ½Q 5 1 Q 6 1 Q 7 1 0:25� q1 1 q2

1 � ð0:5� q1Þ�
¼ Q 5 1 Q 6 1 Q 7 1 Q1 � 0:25: ðA6Þ
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