
ovine scrapie cases with unusual (atypical) diagnostic fea-

tures compared with anterior (classical) scrapie cases have

been observed in the European sheep population.2,3 There-

fore, the type of scrapie (classical/atypical) was determined in

most of the scrapie-positive sheep using published methods.3

In 11 flocks, positive sheep (n ¼ 88) were diagnosed with

classical scrapie while in 37 flocks, all affected sheep (n ¼ 42)

showed an atypical scrapie type. It was not possible to determine

the type of scrapie in some sheep because of advanced dissolution

of the brain samples.

Genotyping methods: DNA extraction and determination of

PRNP haplotypes have been described previously.4 Primers for

markers on sheep chromosome 13 (OAR13), including

CTSBJ12 (DQ399872), HUJ6165 and URB586, were obtained

from the Australian Sheep Gene Mapping web site (http://

rubens.its.unimelb.edu.au/~jillm/jill.htm). Scrapie-positive

sheep and scrapie-negative flock mates had previously been

screened for PRNP haplotypes at codons 136, 154 and 171

(data not presented), which are known to be associated with

scrapie susceptibility.7

Statistical methods: Linkage between PRNP and the three

microsatellites on OAR13 was analysed using CRI-MAP

version 2.4.8 The ovine PRNP gene was assigned to the

OAR13 linkage group: HUJ616 – (5.7 cM) – URB58–

(3.1 cM) – PRNP– (19.0 cM) – CTSBJ12. Using two-point

analyses of PRNP with each of the three microsatellites, the

following distances and LOD scores were found: HUJ616

(8.0 cM, 27.06), URB58 (3.0 cM, 45.81) and CTSBJ12

(18.0 cM, 14.76). The numbers of informative meioses were

279, 266, 226 and 299 for CTSBJ12, HUJ616, PRNP and

URB58 respectively.

To remove the effect of PRNP haplotype in the analysis of

CTSBJ12 with scrapie susceptibility, scrapie-positive sheep were

matched with scrapie-negative flock mates according to PNRP

haplotypes. Chi-square and Fisher’s exact test (in the case of

low numbers of observations within subclasses) were used to

test for significant differences between CTSBJ12 allele frequen-

cies in scrapie-positive sheep and in scrapie-negative flock

mates (Table 1). No significant difference in CTSBJ12 allele

frequency was observed between groups of scrapie-positive

sheep and scrapie-negative flock mates, even when differenti-

ation of classical and atypical scrapie cases was taken into

consideration.
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Source/description: The origin and evolution of Chinese domes-

tic donkeys (Equus asinus) is still uncertain. Although previous

genetic studies revealed two mitochondrial DNA (mtDNA) types

in a few Chinese donkey breeds,1,2 it remains unclear whether

Chinese donkeys originated from previously reported African

Table 1 Frequencies of CTSBJ12 alleles among scrapie-positive sheep and scrapie-negative flock mates.

CTSBJ12

allele

Scrapie-positive

(n ¼ 137)

Scrapie-negative

(n ¼ 137)

Scrapie-positive

(classical) (n ¼ 88)

Scrapie-negative

(classical) (n ¼ 88)

Scrapie-positive

(atypical) (n ¼ 42)

Scrapie-negative

(atypical) (n ¼ 42)

133 0.004 0.000 0.000 0.000 0.012 0.000

139 0.000 0.007 0.000 0.011 0.000 0.000

141 0.209 0.212 0.216 0.187 0.202 0.250

143 0.132 0.135 0.153 0.136 0.083 0.119

145 0.033 0.040 0.040 0.051 0.024 0.012

147 0.179 0.201 0.176 0.182 0.167 0.238

149 0.230 0.226 0.188 0.239 0.298 0.202

151 0.201 0.172 0.204 0.182 0.214 0.179

153 0.012 0.007 0.023 0.012 0.000 0.000

1These authors contributed equally to this work.
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maternal sources because there is no comparison between the

two Chinese mtDNA types and the well-characterized Nubian

and Somali lineages.3 Herein, we sequenced a 440-bp fragment

of the mtDNA control region (CR) of 146 individuals from four

Chinese donkey breeds and compared our sequences with

published sequences from donkeys from the Old World3 so as to

understand the origin of Chinese donkeys.

Sequencing: The ASS-F and ASS-R primers3 were used to amplify

themtDNACR fragment. A total of 146 individuals fromYunnan

(n ¼ 53), Xizang (n ¼ 16), Xinjiang (n ¼ 52) and Guangzhong

(n ¼ 25) were sequenced (Table 1). Polymerase chain reaction

(PCR) products were purified using the Watson PCR Purification

Kit (Watson BioTechnologies Inc., Shanghai, China) and were

directly sequenced. Sequences were edited and aligned by

DNASTAR 5.0 package (DNASTAR Inc., Madison, WI, USA) and

deposited into GenBank (DQ448878–DQ449023).

mtDNA variation: There were 37 haplotypes defined by 37

polymorphic sites (five transversions) among 146 Chinese

donkey sequences (Fig. S1). Comparing these haplotypes with

previously well-defined Nubian and Somali lineages,3 a median-

joining network4 drawn by Network 4.1 (http://www.fluxus-

engineering.com) clearly showed that 15 haplotypes were

shared by China and other worldwide regions, and all Chinese

donkey haplotypes were divided into two star-like Nubian and

Somali lineages with three (d7, d12 and d25) and two (d3 and

d11) central founding haplotypes respectively (Fig. 1). Given

that all five founding haplotypes found in donkeys from China

are also present in other worldwide geographical regions

including northeast Africa, these results provide further support

that Chinese donkeys were derived from African donkeys and

that northeast Africa is the most probable location for donkey

domestication.3
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Figure 1 Median-joining network of 98 haplotypes of domestic donkeys and five sequences of African wild asses. The circle area is proportional to

haplotype frequency. Suffixes A, C, G and T indicate transversions. Nucleotide positions 1–440 correspond to nucleotide positions 15 407–15 846 of

Equus asinus (X97337).

Table 1 Sample size (N), number of haplotypes (n), haplotype diversity (h) and observed frequency and nucleotide diversity values (p) of Nubian and

Somali mtDNA lineages in four Chinese breeds of donkeys.

Breed N n h (±SE) Nubian (%) Somali (%) Nubian p (SE) Somali p (SE)

Yunnan 53 16 0.9347 ± 0.0115 64.2 35.8 0.00612 ± 0.00371 0.00468 ± 0.00306

Xizang 16 6 0.7667 ± 0.0839 81.25 18.75 0.00274 ± 0.00210 0.00303 ± 0.00311

Xinjiang 52 21 0.9163 ± 0.0199 46.2 53.8 0.00450 ± 0.00293 0.00363 ± 0.00247

Guanzhong 25 13 0.9333 ± 0.0280 72.0 28.0 0.00625 ± 0.00389 0.00476 ± 0.00345
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Diversity measures calculated by ARLEQUIN 2.0 (http://

anthropologei.unige.ch/arlequin) showed higher levels of mit-

ochondrial diversity detected in Guangzhong and Yunnan

breeds (Table 1). Due to the high degree of divergence between

the Nubian and Somali lineages,3 we performed analysis of

molecular variance5 using ARLEQUIN 2.0 on Chinese donkey

breeds according to lineage. For the Nubian and Somali line-

ages, only 8.81% (P < 0.01) and 2.34% (P ¼ 0.22) of the

genetic variance could be attributed to differences among

breeds. This suggested weak population substructures among

the four Chinese donkey breeds.
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Source/description: We performed fluorescent in situ hybridiza-

tion (FISH) of seven cattle BAC clones with American mink

(Mustela vison) chromosomes. These clones were previously

mapped and ordered on cattle chromosome 19 (BTA19) and

anchored to human chromosome 17 (HSA17) and mouse

chromosome 11 (MMU11).

FISH conditions: Seven cattle BAC clones from the CHORI-

240 bovine BAC library were selected for FISH with mink

chromosomes (Table 1). Culturing of BACs, DNA extraction

and labelling were performed as described earlier.1 The

hybridization of probes with mink chromosomes from mink

fibroblasts was performed according to standard procedures2

for 48 h with modifications. The hybridization signals were

analysed using an Axioskop 2 epifluorescence microscope

(Carl Zeiss, Göttingen, Germany) equipped with a Paco CCD

camera (CV M300; JAI Corporation, Yokohama, Japan), a

CHROMA filter set and the ISIS4 image-processing package

(MetaSystemsGroup, Inc., Watertown, MA, USA). FISH

signals were assigned to mink chromosome regions defined

by DAPI banding according to mink chromosome nomen-

clature.3 At least 20 metaphases were analysed for the

regional assignment of BACs on mink chromosomes.

Comparative analysis: All bovine BAC clones were assigned to

mink chromosome 8p (MVI8p). Chromosomal and subchro-

mosomal localizations of cattle BACs on mink chromosomes are

presented in Table 1 and Fig. 1a. Comparison of the order of

the BACs in MVI8p and HSA17 revealed three evolutionary

breakpoints between the orthologous mink and human chro-

mosomes. Two evolutionary breakpoints were found when

comparing the MVI8p and BTA19 cytogenetic maps.1 No dif-

ference in the order of the BACs in MVI8p and MMU11 was

noticed. The mink–mouse homologous synteny blocks (HSBs)

were defined and visualized next to HSBs from six mammalian

genomes (Fig. 1b) using the Evolution Highway tool (http://

evolutionhighway.ncsa.uiuc.edu/).

Conclusions: We have generated the first comparatively an-

chored, ordered cytogenetic map of MVI8p. Our analysis shows

Figure 1 (a) Fluorescent in situ hybridization (FISH) of seven BAC

clones with mink chromosomes. Images (a–g) are FISH results for BAC

clones assigned to MVI8p: (a) 67N13; (b) 403K17; (c) 459E01; (d)

45D09; (e) 207O05; (f) 233H17; (g) 253B15. The clone 207O05 has

the strongest signal on MVI8p26(pter) and a weak signal on MVI8p21.

The weak signal overlaps with the position of the nuclear organizer

region in MVI8 and was noticed in only 30% of all analysed cells,

whereas the signal on 8p26(pter) was found in 100% of cells. (b)

Homologous synteny blocks from seven mammalian genomes visual-

ized on MMU11.
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